These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
81 related items for PubMed ID: 8760028
1. Hydrolytic and nonhydrolytic interactions in the ATP regulation of CFTR Cl- conductance. Reddy MM, Quinton PM. Am J Physiol; 1996 Jul; 271(1 Pt 1):C35-42. PubMed ID: 8760028 [Abstract] [Full Text] [Related]
2. Deactivation of CFTR-Cl conductance by endogenous phosphatases in the native sweat duct. Reddy MM, Quinton PM. Am J Physiol; 1996 Feb; 270(2 Pt 1):C474-80. PubMed ID: 8779909 [Abstract] [Full Text] [Related]
3. Cytosolic pH regulates GCl through control of phosphorylation states of CFTR. Reddy MM, Kopito RR, Quinton PM. Am J Physiol; 1998 Oct; 275(4):C1040-7. PubMed ID: 9755057 [Abstract] [Full Text] [Related]
4. Rapid regulation of electrolyte absorption in sweat duct. Reddy MM, Quinton PM. J Membr Biol; 1994 May; 140(1):57-67. PubMed ID: 7519679 [Abstract] [Full Text] [Related]
5. Bumetanide blocks CFTR GCl in the native sweat duct. Reddy MM, Quinton PM. Am J Physiol; 1999 Jan; 276(1):C231-7. PubMed ID: 9886939 [Abstract] [Full Text] [Related]
6. 5'-Adenylylimidodiphosphate does not activate CFTR chloride channels in cell-free patches of membrane. Carson MR, Welsh MJ. Am J Physiol; 1993 Jul; 265(1 Pt 1):L27-32. PubMed ID: 7687826 [Abstract] [Full Text] [Related]
8. Dual effects of ADP and adenylylimidodiphosphate on CFTR channel kinetics show binding to two different nucleotide binding sites. Weinreich F, Riordan JR, Nagel G. J Gen Physiol; 1999 Jul; 114(1):55-70. PubMed ID: 10398692 [Abstract] [Full Text] [Related]
12. Regulation of the gating of cystic fibrosis transmembrane conductance regulator C1 channels by phosphorylation and ATP hydrolysis. Hwang TC, Nagel G, Nairn AC, Gadsby DC. Proc Natl Acad Sci U S A; 1994 May 24; 91(11):4698-702. PubMed ID: 7515176 [Abstract] [Full Text] [Related]
13. Selective activation of cystic fibrosis transmembrane conductance regulator Cl- and HCO3- conductances. Reddy MM, Quinton PM. JOP; 2001 Jul 24; 2(4 Suppl):212-8. PubMed ID: 11875262 [Abstract] [Full Text] [Related]
15. Control of CFTR chloride conductance by ATP levels through non-hydrolytic binding. Quinton PM, Reddy MM. Nature; 1992 Nov 05; 360(6399):79-81. PubMed ID: 1279436 [Abstract] [Full Text] [Related]
17. Regulation of CFTR Cl- conductance in secretion by cellular energy levels. Bell CL, Quinton PM. Am J Physiol; 1993 Apr 05; 264(4 Pt 1):C925-31. PubMed ID: 7682778 [Abstract] [Full Text] [Related]
18. The CFTR chloride channel: nucleotide interactions and temperature-dependent gating. Mathews CJ, Tabcharani JA, Hanrahan JW. J Membr Biol; 1998 May 01; 163(1):55-66. PubMed ID: 9569250 [Abstract] [Full Text] [Related]
19. ATP hydrolysis cycles and the gating of CFTR Cl- channels. Gadsby DC, Dousmanis AG, Nairn AC. Acta Physiol Scand Suppl; 1998 Aug 01; 643():247-56. PubMed ID: 9789567 [Abstract] [Full Text] [Related]
20. Swelling-activated, cystic fibrosis transmembrane conductance regulator-augmented ATP release and Cl- conductances in murine C127 cells. Hazama A, Fan HT, Abdullaev I, Maeno E, Tanaka S, Ando-Akatsuka Y, Okada Y. J Physiol; 2000 Feb 15; 523 Pt 1(Pt 1):1-11. PubMed ID: 10673540 [Abstract] [Full Text] [Related] Page: [Next] [New Search]