These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
220 related items for PubMed ID: 8765713
1. Interactions of inorganic mercury with phospholipid micelles and model membranes. A 31P-NMR study. Girault L, Lemaire P, Boudou A, Debouzy JC, Dufourc EJ. Eur Biophys J; 1996; 24(6):413-21. PubMed ID: 8765713 [Abstract] [Full Text] [Related]
2. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. Huster D, Arnold K, Gawrisch K. Biochemistry; 1998 Dec 08; 37(49):17299-308. PubMed ID: 9860844 [Abstract] [Full Text] [Related]
3. Methyl mercury interactions with phospholipid membranes as reported by fluorescence, 31P and 199Hg NMR. Girault L, Boudou A, Drfourc EJ. Biochim Biophys Acta; 1997 Apr 26; 1325(2):250-62. PubMed ID: 9168150 [Abstract] [Full Text] [Related]
4. Specific interactions of mercury chloride with membranes and other ligands as revealed by mercury-NMR. Delnomdedieu M, Boudou A, Georgescauld D, Dufourc EJ. Chem Biol Interact; 1992 Feb 26; 81(3):243-69. PubMed ID: 1540995 [Abstract] [Full Text] [Related]
5. Binding Affinity of Inorganic Mercury and Cadmium to Biomimetic Erythrocyte Membranes. Hassanin M, Kerek E, Chiu M, Anikovskiy M, Prenner EJ. J Phys Chem B; 2016 Dec 22; 120(50):12872-12882. PubMed ID: 27958740 [Abstract] [Full Text] [Related]
6. Selective 31P(1H) nuclear Overhauser effect study on the polar headgroup conformation of phospholipids in micelles in organic solvents. Shibata T, Uzawa J, Sugiura Y. Chem Phys Lipids; 1983 Jul 22; 33(1):1-10. PubMed ID: 6627521 [Abstract] [Full Text] [Related]
7. 113Cd-, 31P-NMR and fluorescence polarization studies of cadmium(II) interactions with phospholipids in model membranes. Girault L, Boudou A, Dufourc EJ. Biochim Biophys Acta; 1998 Nov 11; 1414(1-2):140-54. PubMed ID: 9804929 [Abstract] [Full Text] [Related]
8. Structural transitions in short-chain lipid assemblies studied by (31)P-NMR spectroscopy. Kleinschmidt JH, Tamm LK. Biophys J; 2002 Aug 11; 83(2):994-1003. PubMed ID: 12124281 [Abstract] [Full Text] [Related]
9. Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol. Slater SJ, Ho C, Taddeo FJ, Kelly MB, Stubbs CD. Biochemistry; 1993 Apr 13; 32(14):3714-21. PubMed ID: 8466911 [Abstract] [Full Text] [Related]
13. A high-resolution NMR study (1H, 13C, 31P) of the interaction of paramagnetic ions with phospholipids in aqueous dispersions. Nolden PW, Ackermann T. Biophys Chem; 1976 May 13; 4(3):297-304. PubMed ID: 985701 [Abstract] [Full Text] [Related]
16. Interaction of the water-soluble protein aprotinin with liposomes: gel-filtration, turbidity studies, and 31P NMR studies. Tiourina O, Sharf T, Balkina A, Ollivon M, Selischeva A, Sorokoumova G, Larionova N. J Liposome Res; 2003 Nov 13; 13(3-4):213-29. PubMed ID: 14670228 [Abstract] [Full Text] [Related]
17. Trio engagement via plasma membrane phospholipids and the myristoyl moiety governs HIV-1 matrix binding to bilayers. Vlach J, Saad JS. Proc Natl Acad Sci U S A; 2013 Feb 26; 110(9):3525-30. PubMed ID: 23401539 [Abstract] [Full Text] [Related]