These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 8768547
1. [The ultrastructural characteristics of the epithelial cells in the frog bladder under the action of vasopressin and in a vasopressin-independent increase in permeability for water]. Komissarchik IaIu, Natochin IuV, Shakhmatova EI, Brudnaia MS, Snigirevskaia ES, Korolev EV, Parnova RG. Tsitologiia; 1996; 38(1):14-21. PubMed ID: 8768547 [Abstract] [Full Text] [Related]
2. AVP-independent high osmotic water permeability of frog urinary bladder and autacoids. Natochin YV, Parnova RG, Shakhmatova EI, Komissarchik YY, Brudnaya MS, Snigirevskaya ES. Pflugers Arch; 1996; 433(1-2):136-45. PubMed ID: 9019714 [Abstract] [Full Text] [Related]
3. [An ultrastructural study of the apical cytoskeleton of the epithelial cells in the frog bladder with an ADH-dependent and an ADH-independent increase in osmotic permeability]. Komissarchik IaIu, Makarenkova EI, Snigirevskaia ES, Shakhmatova EI, Brudnaia MS, Natochin IuV. Tsitologiia; 1996; 38(9):927-33. PubMed ID: 9019895 [Abstract] [Full Text] [Related]
4. [The participation of intracellular membranes in forming highly permeable domains in the plasma membrane of epithelial cells during the vasopressin stimulation of water transport]. Komissarchik IaIu, Snigirevskaia ES. Tsitologiia; 1991; 33(11):135-40. PubMed ID: 1819170 [Abstract] [Full Text] [Related]
6. Evidence of basolateral water permeability regulation in amphibian urinary bladder. Candia OA, Mia A, Yorio T. Biol Cell; 1997 Aug; 89(5-6):331-9. PubMed ID: 9468604 [Abstract] [Full Text] [Related]
7. [Ultrastructure of the apical plasma membrane of the granular cells in the frog bladder during cobalt-ion decrease in the vasopressin effect]. Komissarchik IaIu, Romanov VI, Snigirevskaia ES, Shakhmatova EI, Natochin IuV. Tsitologiia; 1989 May; 31(5):515-22. PubMed ID: 2528228 [Abstract] [Full Text] [Related]
8. A novel type of microtubules in the frog urinary bladder epithelium stimulated by vasopressin. Snigirevskaya ES, Komissarchik JJ. J Submicrosc Cytol Pathol; 1993 Jul; 25(3):389-96. PubMed ID: 8402539 [Abstract] [Full Text] [Related]
9. Prostaglandin-dependent osmotic water permeability of the frog and trout urinary bladder. Natochin YuV, Shakhmatova EI, Komissarchik YaYu, Snigirevskaya ES, Prutskova NP, Brudnaya MS. Comp Biochem Physiol A Mol Integr Physiol; 1998 Sep; 121(1):59-66. PubMed ID: 9883569 [Abstract] [Full Text] [Related]
10. Ultrastructural correlates of the antidiuretic hormone-dependent and antidiuretic hormone-independent increase of osmotic water permeability in the frog urinary bladder epithelium. Komissarchik YY, Snigirevskaya ES, Shakhmatova EI, Natochin YV. Cell Tissue Res; 1998 Sep; 293(3):517-24. PubMed ID: 9716742 [Abstract] [Full Text] [Related]
11. [The electron microscopic analysis of the mechanism of the insertion of high water permeability domains into the apical membrane of epithelial cells]. Komissarchik IaIu, Snigirevskaia ES. Tsitologiia; 1990 Sep; 32(11):1084-7. PubMed ID: 2093243 [Abstract] [Full Text] [Related]
12. [Analysis of cytoskeleton structural changes in the granular cells of the frog bladder during the stimulation of water transport]. Snigirevskaia ES, Komissarchik IaIu. Tsitologiia; 1987 Feb; 29(2):150-5. PubMed ID: 3495056 [Abstract] [Full Text] [Related]
13. [Cholesterol localization in the membranes of granular cells in the bladder epithelium of the frog during stimulated water transport]. Kever LV, Komissarchik IaIu, Korolev EV. Tsitologiia; 1988 May; 30(5):524-31. PubMed ID: 3262945 [Abstract] [Full Text] [Related]
14. [Spontaneous and induced permeability of the tight junctions in the bladder epithelium of the frog Rana temporaria]. Bagrov IaIu, Komissarchik IaIu, Manusova NB, Snigirevskaia ES. Tsitologiia; 1993 May; 35(2):44-54. PubMed ID: 8322415 [Abstract] [Full Text] [Related]
15. Differential effects of vasopressin on the water, calcium and lysosomal enzyme contents of mitochondria-rich and lysosome-rich (granular) epithelial cells isolated from bullfrog urinary bladder. Pietras RJ, Naujokaitis PJ, Szego CM. Mol Cell Endocrinol; 1976 Jan; 4(2):89-106. PubMed ID: 1082422 [Abstract] [Full Text] [Related]
16. The effect of arachidonic acid on the hydroosmotic action of vasopressin in frog urinary bladder. Firsov DL, Parnova RG. Biochim Biophys Acta; 1994 Feb 17; 1220(3):305-9. PubMed ID: 7508266 [Abstract] [Full Text] [Related]
18. Hydroosmotic activities of arginine-vasopressins modified either in positions 1, 2 and 4 or at N-terminal extensions. Bakos P, Shakhmatova EI, Ponec J, Alexandrová M, Lichardus B, Lammek B, Rekowski P, Kupryszewski G. Gen Physiol Biophys; 1992 Aug 17; 11(4):359-76. PubMed ID: 1426981 [Abstract] [Full Text] [Related]
19. Activation of the vasopressin-sensitive water permeability pathway in the toad bladder by N-ethyl maleimide. Marples D, Bourguet J, Taylor A. Exp Physiol; 1994 Sep 17; 79(5):775-95. PubMed ID: 7818866 [Abstract] [Full Text] [Related]
20. Irreversible stimulation of hydroosmotic response in toad bladder by photoaffinity labeling with [Phe2,Phe-(p-N3)3]Vasopressin. Eggena P, Fahrenholz F, Schwartz IL. Endocrinology; 1983 Oct 17; 113(4):1413-21. PubMed ID: 6311520 [Abstract] [Full Text] [Related] Page: [Next] [New Search]