These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. In vitro perfusion of chinchilla thin limb segments: segmentation and osmotic water permeability. Chou CL, Knepper MA. Am J Physiol; 1992 Sep; 263(3 Pt 2):F417-26. PubMed ID: 1415570 [Abstract] [Full Text] [Related]
3. In vitro perfusion of chinchilla thin limb segments: urea and NaCl permeabilities. Chou CL, Knepper MA. Am J Physiol; 1993 Feb; 264(2 Pt 2):F337-43. PubMed ID: 8447443 [Abstract] [Full Text] [Related]
4. Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. Imai M, Kokko JP. J Clin Invest; 1974 Feb; 53(2):393-402. PubMed ID: 11344552 [Abstract] [Full Text] [Related]
5. Ammonium and bicarbonate transport in isolated perfused rodent long-loop thin descending limbs. Flessner MF, Mejia R, Knepper MA. Am J Physiol; 1993 Mar; 264(3 Pt 2):F388-96. PubMed ID: 8456952 [Abstract] [Full Text] [Related]
6. Ammonium and bicarbonate transport in isolated perfused rodent ascending limbs of the loop of Henle. Flessner MF, Knepper MA. Am J Physiol; 1993 May; 264(5 Pt 2):F837-44. PubMed ID: 8498537 [Abstract] [Full Text] [Related]
7. Simulation of the profile of water, NaCl, and urea transport in the countercurrent multiplication system between thin ascending limb and inner medullary collecting duct. Hamada Y, Imai M, Aoki T, Suzuki R, Kamiya A. Tohoku J Exp Med; 1992 Sep; 168(1):47-62. PubMed ID: 1488758 [Abstract] [Full Text] [Related]
8. Effect of varying salt and urea permeabilities along descending limbs of Henle in a model of the renal medullary urine concentrating mechanism. Thomas SR. Bull Math Biol; 1991 Sep; 53(6):825-43. PubMed ID: 1958893 [Abstract] [Full Text] [Related]
9. Transepithelial water and urea permeabilities of isolated perfused Munich-Wistar rat inner medullary thin limbs of Henle's loop. Nawata CM, Evans KK, Dantzler WH, Pannabecker TL. Am J Physiol Renal Physiol; 2014 Jan 01; 306(1):F123-9. PubMed ID: 24197065 [Abstract] [Full Text] [Related]
13. Sodium chloride and water transport in the medullary thick ascending limb of Henle. Evidence for active chloride transport. Rocha AS, Kokko JP. J Clin Invest; 1973 Mar 01; 52(3):612-23. PubMed ID: 4685086 [Abstract] [Full Text] [Related]
14. Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle. Dantzler WH, Layton AT, Layton HE, Pannabecker TL. Clin J Am Soc Nephrol; 2014 Oct 07; 9(10):1781-9. PubMed ID: 23908457 [Abstract] [Full Text] [Related]
15. NaCl transport in mouse medullary thick ascending limbs. III. Modulation of the ADH effect by peritubular osmolality. Hebert SC, Culpepper RM, Andreoli TE. Am J Physiol; 1981 Oct 07; 241(4):F443-51. PubMed ID: 6797307 [Abstract] [Full Text] [Related]
16. Mechanisms to concentrate the urine: an opinion. Halperin ML, Kamel KS, Oh MS. Curr Opin Nephrol Hypertens; 2008 Jul 07; 17(4):416-22. PubMed ID: 18660679 [Abstract] [Full Text] [Related]
17. Urea transport in a distributed loop model of the urine-concentrating mechanism. Layton HE. Am J Physiol; 1990 Apr 07; 258(4 Pt 2):F1110-24. PubMed ID: 2330976 [Abstract] [Full Text] [Related]
18. Renal medullary concentrating process: an integrative hypothesis. Bonventre JV, Lechene C. Am J Physiol; 1980 Dec 07; 239(6):F578-88. PubMed ID: 7446733 [Abstract] [Full Text] [Related]
19. Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney. Marcano M, Layton AT, Layton HE. Bull Math Biol; 2010 Feb 07; 72(2):314-39. PubMed ID: 19915926 [Abstract] [Full Text] [Related]
20. Sodium chloride and water transport in the thin descending limb of Henle of the quail. Nishimura H, Koseki C, Imai M, Braun EJ. Am J Physiol; 1989 Dec 07; 257(6 Pt 2):F994-1002. PubMed ID: 2603965 [Abstract] [Full Text] [Related] Page: [Next] [New Search]