These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


150 related items for PubMed ID: 8770168

  • 1. Basal nitric oxide production curtails arteriolar vasoconstrictor responses to ANG II in rat kidney.
    Ikenaga H, Fallet RW, Carmines PK.
    Am J Physiol; 1996 Aug; 271(2 Pt 2):F365-73. PubMed ID: 8770168
    [Abstract] [Full Text] [Related]

  • 2. Superoxide anion curbs nitric oxide modulation of afferent arteriolar ANG II responsiveness in diabetes mellitus.
    Schoonmaker GC, Fallet RW, Carmines PK.
    Am J Physiol Renal Physiol; 2000 Feb; 278(2):F302-9. PubMed ID: 10662734
    [Abstract] [Full Text] [Related]

  • 3. EDRF-angiotensin II interactions in rat juxtamedullary afferent and efferent arterioles.
    Ohishi K, Carmines PK, Inscho EW, Navar LG.
    Am J Physiol; 1992 Nov; 263(5 Pt 2):F900-6. PubMed ID: 1332506
    [Abstract] [Full Text] [Related]

  • 4. Neuronal nitric oxide synthase-dependent afferent arteriolar function in angiotensin II-induced hypertension.
    Ichihara A, Imig JD, Navar LG.
    Hypertension; 1999 Jan; 33(1 Pt 2):462-6. PubMed ID: 9931148
    [Abstract] [Full Text] [Related]

  • 5. Interactive nitric oxide-angiotensin II influences on renal microcirculation in angiotensin II-induced hypertension.
    Ichihara A, Imig JD, Inscho EW, Navar LG.
    Hypertension; 1998 Jun; 31(6):1255-60. PubMed ID: 9622138
    [Abstract] [Full Text] [Related]

  • 6. Neuronal nitric oxide synthase modulates rat renal microvascular function.
    Ichihara A, Inscho EW, Imig JD, Navar LG.
    Am J Physiol; 1998 Mar; 274(3):F516-24. PubMed ID: 9530268
    [Abstract] [Full Text] [Related]

  • 7. Suppressed impact of nitric oxide on renal arteriolar function in rats with chronic heart failure.
    Ikenaga H, Ishii N, Didion SP, Zhang K, Cornish KG, Patel KP, Mayhan WG, Carmines PK.
    Am J Physiol; 1999 Jan; 276(1):F79-87. PubMed ID: 9887083
    [Abstract] [Full Text] [Related]

  • 8. Myoglobin facilitates angiotensin II-induced constriction of renal afferent arterioles.
    Liu ZZ, Mathia S, Pahlitzsch T, Wennysia IC, Persson PB, Lai EY, Högner A, Xu MZ, Schubert R, Rosenberger C, Patzak A.
    Am J Physiol Renal Physiol; 2017 May 01; 312(5):F908-F916. PubMed ID: 28052871
    [Abstract] [Full Text] [Related]

  • 9. Renal arteriolar angiotensin responses during varied adenosine receptor activation.
    Carmines PK, Inscho EW.
    Hypertension; 1994 Jan 01; 23(1 Suppl):I114-9. PubMed ID: 8282342
    [Abstract] [Full Text] [Related]

  • 10. Afferent arteriolar responses to ANG II involve activation of PLA2 and modulation by lipoxygenase and P-450 pathways.
    Imig JD, Deichmann PC.
    Am J Physiol; 1997 Aug 01; 273(2 Pt 2):F274-82. PubMed ID: 9277588
    [Abstract] [Full Text] [Related]

  • 11. Contribution of tubuloglomerular feedback to renal arteriolar angiotensin II responsiveness.
    Ikenaga H, Fallet RW, Carmines PK.
    Kidney Int; 1996 Jan 01; 49(1):34-9. PubMed ID: 8770946
    [Abstract] [Full Text] [Related]

  • 12. Afferent and efferent arteriolar vasoconstriction to angiotensin II and norepinephrine involves release of Ca2+ from intracellular stores.
    Inscho EW, Imig JD, Cook AK.
    Hypertension; 1997 Jan 01; 29(1 Pt 2):222-7. PubMed ID: 9039106
    [Abstract] [Full Text] [Related]

  • 13. Nitric oxide synthase inhibition activates L- and T-type Ca2+ channels in afferent and efferent arterioles.
    Feng MG, Navar LG.
    Am J Physiol Renal Physiol; 2006 Apr 01; 290(4):F873-9. PubMed ID: 16263803
    [Abstract] [Full Text] [Related]

  • 14. Disparate effects of Ca channel blockade on afferent and efferent arteriolar responses to ANG II.
    Carmines PK, Navar LG.
    Am J Physiol; 1989 Jun 01; 256(6 Pt 2):F1015-20. PubMed ID: 2544103
    [Abstract] [Full Text] [Related]

  • 15. Interactions of adenosine A1 receptor-mediated renal vasoconstriction with endogenous nitric oxide and ANG II.
    Barrett RJ, Droppleman DA.
    Am J Physiol; 1993 Nov 01; 265(5 Pt 2):F651-9. PubMed ID: 8238545
    [Abstract] [Full Text] [Related]

  • 16. Membrane potential measurements in renal afferent and efferent arterioles: actions of angiotensin II.
    Loutzenhiser R, Chilton L, Trottier G.
    Am J Physiol; 1997 Aug 01; 273(2 Pt 2):F307-14. PubMed ID: 9277592
    [Abstract] [Full Text] [Related]

  • 17. Vessel- and vasoconstrictor-dependent role of rho/rho-kinase in renal microvascular tone.
    Nakamura A, Hayashi K, Ozawa Y, Fujiwara K, Okubo K, Kanda T, Wakino S, Saruta T.
    J Vasc Res; 2003 Aug 01; 40(3):244-51. PubMed ID: 12902637
    [Abstract] [Full Text] [Related]

  • 18. Influence of Ca(2+)-activated K(+) channels on rat renal arteriolar responses to depolarizing agonists.
    Fallet RW, Bast JP, Fujiwara K, Ishii N, Sansom SC, Carmines PK.
    Am J Physiol Renal Physiol; 2001 Apr 01; 280(4):F583-91. PubMed ID: 11249849
    [Abstract] [Full Text] [Related]

  • 19. Superoxide inhibits neuronal nitric oxide synthase influences on afferent arterioles in spontaneously hypertensive rats.
    Ichihara A, Hayashi M, Hirota N, Saruta T.
    Hypertension; 2001 Feb 01; 37(2 Pt 2):630-4. PubMed ID: 11230347
    [Abstract] [Full Text] [Related]

  • 20. Angiotensin II-mediated constriction of afferent and efferent arterioles involves T-type Ca2+ channel activation.
    Feng MG, Navar LG.
    Am J Nephrol; 2004 Feb 01; 24(6):641-8. PubMed ID: 15627720
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.