These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
685 related items for PubMed ID: 8770215
21. A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Kitamura K, Tokunaga M, Iwane AH, Yanagida T. Nature; 1999 Jan 14; 397(6715):129-34. PubMed ID: 9923673 [Abstract] [Full Text] [Related]
22. Velocities of unloaded muscle filaments are not limited by drag forces imposed by myosin cross-bridges. Brizendine RK, Alcala DB, Carter MS, Haldeman BD, Facemyer KC, Baker JE, Cremo CR. Proc Natl Acad Sci U S A; 2015 Sep 08; 112(36):11235-40. PubMed ID: 26294254 [Abstract] [Full Text] [Related]
23. Sub-piconewton force fluctuations of actomyosin in vitro. Ishijima A, Doi T, Sakurada K, Yanagida T. Nature; 1991 Jul 25; 352(6333):301-6. PubMed ID: 1830130 [Abstract] [Full Text] [Related]
24. Single-molecule measurement of the stiffness of the rigor myosin head. Lewalle A, Steffen W, Stevenson O, Ouyang Z, Sleep J. Biophys J; 2008 Mar 15; 94(6):2160-9. PubMed ID: 18065470 [Abstract] [Full Text] [Related]
25. The mechanism of force generation in myosin: a disorder-to-order transition, coupled to internal structural changes. Thomas DD, Ramachandran S, Roopnarine O, Hayden DW, Ostap EM. Biophys J; 1995 Apr 15; 68(4 Suppl):135S-141S. PubMed ID: 7787056 [Abstract] [Full Text] [Related]
26. Simultaneous recordings of force and sliding movement between a myosin-coated glass microneedle and actin cables in vitro. Chaen S, Oiwa K, Shimmen T, Iwamoto H, Sugi H. Proc Natl Acad Sci U S A; 1989 Mar 15; 86(5):1510-4. PubMed ID: 2922395 [Abstract] [Full Text] [Related]
27. Electric dipole theory and thermodynamics of actomyosin molecular motor in muscle contraction. Lampinen MJ, Noponen T. J Theor Biol; 2005 Oct 21; 236(4):397-421. PubMed ID: 15919094 [Abstract] [Full Text] [Related]
28. Evidence for increased low force cross-bridge population in shortening skinned skeletal muscle fibers: implications for actomyosin kinetics. Iwamoto H. Biophys J; 1995 Sep 21; 69(3):1022-35. PubMed ID: 8519957 [Abstract] [Full Text] [Related]
30. Distribution of attachment events relative to actin binding sites as evidenced in a bidirectional actomyosin interaction model. Bentil DE. Bull Math Biol; 1998 Sep 21; 60(5):973-95. PubMed ID: 9739621 [Abstract] [Full Text] [Related]
31. Conformational change of the actomyosin complex drives the multiple stepping movement. Terada TP, Sasai M, Yomo T. Proc Natl Acad Sci U S A; 2002 Jul 09; 99(14):9202-6. PubMed ID: 12082180 [Abstract] [Full Text] [Related]
32. Temperature dependence of the force-generating process in single fibres from frog skeletal muscle. Piazzesi G, Reconditi M, Koubassova N, Decostre V, Linari M, Lucii L, Lombardi V. J Physiol; 2003 May 15; 549(Pt 1):93-106. PubMed ID: 12665607 [Abstract] [Full Text] [Related]
39. Scanning electron microscopy of the myosin-coated surface of polystyrene beads in a force-movement assay system for ATP-dependent actin-myosin sliding. Takahashi I, Oiwa K, Kawakami T, Tanaka H, Sugi H. J Electron Microsc (Tokyo); 1993 Oct 15; 42(5):334-7. PubMed ID: 8106853 [Abstract] [Full Text] [Related]