These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
152 related items for PubMed ID: 8770231
21. Penetration of the antimicrobial peptide dicynthaurin into phospholipid monolayers at the liquid-air interface. Bringezu F, Majerowicz M, Maltseva E, Wen S, Brezesinski G, Waring AJ. Chembiochem; 2007 Jun 18; 8(9):1038-47. PubMed ID: 17492697 [Abstract] [Full Text] [Related]
22. Modulation of melittin-induced lysis by surface charge density of membranes. Monette M, Lafleur M. Biophys J; 1995 Jan 18; 68(1):187-95. PubMed ID: 7711241 [Abstract] [Full Text] [Related]
23. Polarization-modulated FTIR spectroscopy of lipid/gramicidin monolayers at the air/water interface. Ulrich WP, Vogel H. Biophys J; 1999 Mar 18; 76(3):1639-47. PubMed ID: 10049344 [Abstract] [Full Text] [Related]
24. A time domain study of surfactin penetrating a phospholipid monolayer at the air-water interface investigated using sum frequency generation spectroscopy, infrared reflection absorption spectroscopy, and AFM-nano infrared microscopy. Goussous SA, Fellows AP, Casford MTL, Davies PB. Biochim Biophys Acta Biomembr; 2019 Sep 01; 1861(9):1568-1578. PubMed ID: 31199896 [Abstract] [Full Text] [Related]
25. An infrared reflection-absorption spectroscopy study of the secondary structure in (KL4)4K, a therapeutic agent for respiratory distress syndrome, in aqueous monolayers with phospholipids. Cai P, Flach CR, Mendelsohn R. Biochemistry; 2003 Aug 12; 42(31):9446-52. PubMed ID: 12899632 [Abstract] [Full Text] [Related]
26. Influence of lipid chain unsaturation on melittin-induced micellization. Monette M, Lafleur M. Biophys J; 1996 May 12; 70(5):2195-202. PubMed ID: 9172743 [Abstract] [Full Text] [Related]
27. Infrared spectroscopic investigations of pulmonary surfactant. Surface film transitions at the air-water interface and bulk phase thermotropism. Dluhy RA, Reilly KE, Hunt RD, Mitchell ML, Mautone AJ, Mendelsohn R. Biophys J; 1989 Dec 12; 56(6):1173-81. PubMed ID: 2611331 [Abstract] [Full Text] [Related]
28. External reflection FTIR of peptide monolayer films in situ at the air/water interface: experimental design, spectra-structure correlations, and effects of hydrogen-deuterium exchange. Flach CR, Brauner JW, Taylor JW, Baldwin RC, Mendelsohn R. Biophys J; 1994 Jul 12; 67(1):402-10. PubMed ID: 7919013 [Abstract] [Full Text] [Related]
29. Infrared spectroscopic study of the secondary structure of melittin in water, 2-chloroethanol, and phospholipid bilayer dispersions. Lavialle F, Adams RG, Levin IW. Biochemistry; 1982 May 11; 21(10):2305-12. PubMed ID: 7093190 [Abstract] [Full Text] [Related]
30. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state (31)P and (13)C NMR spectroscopy. Naito A, Nagao T, Norisada K, Mizuno T, Tuzi S, Saitô H. Biophys J; 2000 May 11; 78(5):2405-17. PubMed ID: 10777736 [Abstract] [Full Text] [Related]
31. Interaction of violacein in models for cellular membranes: Regulation of the interaction by the lipid composition at the air-water interface. de Souza KD, Perez KR, Durán N, Justo GZ, Caseli L. Colloids Surf B Biointerfaces; 2017 Dec 01; 160():247-253. PubMed ID: 28942159 [Abstract] [Full Text] [Related]
32. Orientation of specifically 13C=O labeled phosphatidylcholine multilayers from polarized attenuated total reflection FT-IR spectroscopy. Hübner W, Mantsch HH. Biophys J; 1991 Jun 01; 59(6):1261-72. PubMed ID: 1873463 [Abstract] [Full Text] [Related]
33. Real-time structural investigation of a lipid bilayer during its interaction with melittin using sum frequency generation vibrational spectroscopy. Chen X, Wang J, Kristalyn CB, Chen Z. Biophys J; 2007 Aug 01; 93(3):866-75. PubMed ID: 17483186 [Abstract] [Full Text] [Related]
34. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Bernèche S, Nina M, Roux B. Biophys J; 1998 Oct 01; 75(4):1603-18. PubMed ID: 9746504 [Abstract] [Full Text] [Related]
35. Melittin creates transient pores in a lipid bilayer: results from computer simulations. Santo KP, Irudayam SJ, Berkowitz ML. J Phys Chem B; 2013 May 02; 117(17):5031-42. PubMed ID: 23534858 [Abstract] [Full Text] [Related]
36. Multiple orientation of melittin inside a single lipid bilayer determined by combined vibrational spectroscopic studies. Chen X, Wang J, Boughton AP, Kristalyn CB, Chen Z. J Am Chem Soc; 2007 Feb 07; 129(5):1420-7. PubMed ID: 17263427 [Abstract] [Full Text] [Related]
37. Specific interaction restrains structural transitions of an amphiphilic peptide in pulmonary surfactant model systems: an in situ PM-IRRAS investigation. Nakahara H, Lee S, Shibata O. Biochim Biophys Acta; 2010 Jun 07; 1798(6):1263-71. PubMed ID: 20175990 [Abstract] [Full Text] [Related]
38. Melittin adsorption and lipid monolayer disruption at liquid-liquid interfaces. Méndez MA, Nazemi Z, Uyanik I, Lu Y, Girault HH. Langmuir; 2011 Nov 15; 27(22):13918-24. PubMed ID: 21962026 [Abstract] [Full Text] [Related]
39. Interaction of melittin peptides with perfluorocarbon nanoemulsion particles. Lee SJ, Schlesinger PH, Wickline SA, Lanza GM, Baker NA. J Phys Chem B; 2011 Dec 29; 115(51):15271-9. PubMed ID: 22050303 [Abstract] [Full Text] [Related]
40. Thermodynamic and infrared analyses of the interaction of chlorpromazine with phospholipid monolayers. Hidalgo AA, Pimentel AS, Tabak M, Oliveira ON. J Phys Chem B; 2006 Oct 05; 110(39):19637-46. PubMed ID: 17004832 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]