These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
231 related items for PubMed ID: 8777025
1. Temporal-spatial characteristics of wheelchair propulsion. Effects of level of spinal cord injury, terrain, and propulsion rate. Newsam CJ, Mulroy SJ, Gronley JK, Bontrager EL, Perry J. Am J Phys Med Rehabil; 1996; 75(4):292-9. PubMed ID: 8777025 [Abstract] [Full Text] [Related]
2. Preliminary outcomes of the SmartWheel Users' Group database: a proposed framework for clinicians to objectively evaluate manual wheelchair propulsion. Cowan RE, Boninger ML, Sawatzky BJ, Mazoyer BD, Cooper RA. Arch Phys Med Rehabil; 2008 Feb; 89(2):260-8. PubMed ID: 18226649 [Abstract] [Full Text] [Related]
3. Influence of varying level terrain on wheelchair propulsion biomechanics. Hurd WJ, Morrow MM, Kaufman KR, An KN. Am J Phys Med Rehabil; 2008 Dec; 87(12):984-91. PubMed ID: 18824889 [Abstract] [Full Text] [Related]
7. Comparison of the 6-Min Propulsion and Arm Crank Ergometer Tests to Assess Aerobic Fitness in Manual Wheelchair Users With a Spinal Cord Injury. Bass A, Brosseau R, Décary S, Gauthier C, Gagnon DH. Am J Phys Med Rehabil; 2020 Dec; 99(12):1099-1108. PubMed ID: 32675708 [Abstract] [Full Text] [Related]
8. Comparison of shoulder muscle electromyographic activity during standard manual wheelchair and push-rim activated power assisted wheelchair propulsion in persons with complete tetraplegia. Lighthall-Haubert L, Requejo PS, Mulroy SJ, Newsam CJ, Bontrager E, Gronley JK, Perry J. Arch Phys Med Rehabil; 2009 Nov; 90(11):1904-15. PubMed ID: 19887216 [Abstract] [Full Text] [Related]
9. Manual wheelchair propulsion patterns on natural surfaces during start-up propulsion. Koontz AM, Roche BM, Collinger JL, Cooper RA, Boninger ML. Arch Phys Med Rehabil; 2009 Nov; 90(11):1916-23. PubMed ID: 19887217 [Abstract] [Full Text] [Related]
10. The effect of level of spinal cord injury on shoulder joint kinetics during manual wheelchair propulsion. Kulig K, Newsam CJ, Mulroy SJ, Rao S, Gronley JK, Bontrager EL, Perry J. Clin Biomech (Bristol); 2001 Nov; 16(9):744-51. PubMed ID: 11714551 [Abstract] [Full Text] [Related]
12. Relationship Between Hand Contact Angle and Shoulder Loading During Manual Wheelchair Propulsion by Individuals with Paraplegia. Requejo PS, Mulroy SJ, Ruparel P, Hatchett PE, Haubert LL, Eberly VJ, Gronley JK. Top Spinal Cord Inj Rehabil; 2015 Nov; 21(4):313-24. PubMed ID: 26689696 [Abstract] [Full Text] [Related]
13. A kinetic analysis of manual wheelchair propulsion during start-up on select indoor and outdoor surfaces. Koontz AM, Cooper RA, Boninger ML, Yang Y, Impink BG, van der Woude LH. J Rehabil Res Dev; 2005 Nov; 42(4):447-58. PubMed ID: 16320141 [Abstract] [Full Text] [Related]
15. Effects of spinal cord injury level on the activity of shoulder muscles during wheelchair propulsion: an electromyographic study. Mulroy SJ, Farrokhi S, Newsam CJ, Perry J. Arch Phys Med Rehabil; 2004 Jun; 85(6):925-34. PubMed ID: 15179646 [Abstract] [Full Text] [Related]
20. Three dimensional upper extremity motion during manual wheelchair propulsion in men with different levels of spinal cord injury. Newsam CJ, Rao SS, Mulroy SJ, Gronley JK, Bontrager EL, Perry J. Gait Posture; 1999 Dec; 10(3):223-32. PubMed ID: 10567754 [Abstract] [Full Text] [Related] Page: [Next] [New Search]