These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
201 related items for PubMed ID: 8789121
1. Elastic energy of curvature-driven bump formation on red blood cell membrane. Waugh RE. Biophys J; 1996 Feb; 70(2):1027-35. PubMed ID: 8789121 [Abstract] [Full Text] [Related]
2. Elastic properties of the red blood cell membrane that determine echinocyte deformability. Kuzman D, Svetina S, Waugh RE, Zeks B. Eur Biophys J; 2004 Feb; 33(1):1-15. PubMed ID: 13680208 [Abstract] [Full Text] [Related]
3. Elastic energy of the discocyte-stomatocyte transformation. Muñoz S, Sebastián JL, Sancho M, Alvarez G. Biochim Biophys Acta; 2014 Mar; 1838(3):950-6. PubMed ID: 24192054 [Abstract] [Full Text] [Related]
4. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells. Svetina S, Kuzman D, Waugh RE, Ziherl P, Zeks B. Bioelectrochemistry; 2004 May; 62(2):107-13. PubMed ID: 15039011 [Abstract] [Full Text] [Related]
5. Remodeling the shape of the skeleton in the intact red cell. Khodadad JK, Waugh RE, Podolski JL, Josephs R, Steck TL. Biophys J; 1996 Feb; 70(2):1036-44. PubMed ID: 8789122 [Abstract] [Full Text] [Related]
6. Amphiphile induced echinocyte-spheroechinocyte transformation of red blood cell shape. Iglic A, Kralj-Iglic V, Hägerstrand H. Eur Biophys J; 1998 Feb; 27(4):335-9. PubMed ID: 9691462 [Abstract] [Full Text] [Related]
11. On the mechanism of stomatocyte-echinocyte transformations of red blood cells: experiment and theoretical model. Tachev KD, Danov KD, Kralchevsky PA. Colloids Surf B Biointerfaces; 2004 Mar 15; 34(2):123-40. PubMed ID: 15261082 [Abstract] [Full Text] [Related]
12. Spectrin, human erythrocyte shapes, and mechanochemical properties. Stokke BT, Mikkelsen A, Elgsaeter A. Biophys J; 1986 Jan 15; 49(1):319-27. PubMed ID: 3955175 [Abstract] [Full Text] [Related]
13. Resting shape and spontaneous membrane curvature of red blood cells. Pozrikidis C. Math Med Biol; 2005 Mar 15; 22(1):34-52. PubMed ID: 15716299 [Abstract] [Full Text] [Related]
14. Deformational strain energy and erythrocyte shape. McMillan DE, Mitchell TP, Utterback NG. J Biomech; 1986 Mar 15; 19(4):275-86. PubMed ID: 3711126 [Abstract] [Full Text] [Related]
15. The human erythrocyte membrane skeleton may be an ionic gel. II. Numerical analyses of cell shapes and shape transformations. Stokke BT, Mikkelsen A, Elgsaeter A. Eur Biophys J; 1986 Mar 15; 13(4):219-33. PubMed ID: 3709420 [Abstract] [Full Text] [Related]
16. Bending undulations and elasticity of the erythrocyte membrane: effects of cell shape and membrane organization. Zeman K, Engelhard H, Sackmann E. Eur Biophys J; 1990 Mar 15; 18(4):203-19. PubMed ID: 2364914 [Abstract] [Full Text] [Related]
17. [Membrane organization in the plane of the layer and cell shape. Statistical approach]. Markin VS. Biofizika; 1980 Mar 15; 25(5):941-52. PubMed ID: 7417587 [Abstract] [Full Text] [Related]
19. Electrostatic free energy and spontaneous curvature of spherical charged layered membrane. Lerche D, Kozlov MM, Markin VS. Biorheology; 1987 Mar 15; 24(1):23-34. PubMed ID: 3651580 [Abstract] [Full Text] [Related]
20. A possible physical mechanism of red blood cell vesiculation obtained by incubation at high pH. Iglic A, Hägerstrand H, Kralj-Iglic V, Bobrowska-Hägerstrand M. J Biomech; 1998 Feb 15; 31(2):151-6. PubMed ID: 9593208 [Abstract] [Full Text] [Related] Page: [Next] [New Search]