These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 8789121

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Bilayer balance and regulation of red cell shape changes.
    Mohandas N, Greenquist AC, Shohet SB.
    J Supramol Struct; 1978; 9(3):453-8. PubMed ID: 748684
    [Abstract] [Full Text] [Related]

  • 24. Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer- couple hypothesis from membrane mechanics.
    Lim H W G, Wortis M, Mukhopadhyay R.
    Proc Natl Acad Sci U S A; 2002 Dec 24; 99(26):16766-9. PubMed ID: 12471152
    [Abstract] [Full Text] [Related]

  • 25. A possible mechanism determining the stability of spiculated red blood cells.
    Iglic A.
    J Biomech; 1997 Jan 24; 30(1):35-40. PubMed ID: 8970922
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Stability of spiculated red blood cells induced by intercalation of amphiphiles in cell membrane.
    Iglic A, Kralj-Iglic V, Hägerstrand H.
    Med Biol Eng Comput; 1998 Mar 24; 36(2):251-5. PubMed ID: 9684471
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Membrane skeleton and red blood cell vesiculation at low pH.
    Bobrowska-Hägerstrand M, Hägerstrand H, Iglic A.
    Biochim Biophys Acta; 1998 Apr 22; 1371(1):123-8. PubMed ID: 9565664
    [Abstract] [Full Text] [Related]

  • 30. Influence of cholesterol content on red cell membrane viscoelasticity and fluidity.
    Chabanel A, Flamm M, Sung KL, Lee MM, Schachter D, Chien S.
    Biophys J; 1983 Nov 22; 44(2):171-6. PubMed ID: 6652212
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Thermoelasticity of red blood cell membrane.
    Waugh R, Evans EA.
    Biophys J; 1979 Apr 22; 26(1):115-31. PubMed ID: 262408
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Equilibrium shapes of erythrocytes in rouleau formation.
    Derganc J, Bozic B, Svetina S, Zeks B.
    Biophys J; 2003 Mar 22; 84(3):1486-92. PubMed ID: 12609855
    [Abstract] [Full Text] [Related]

  • 36. The stress-free shape of the red blood cell membrane.
    Fischer TM, Haest CW, Stöhr-Liesen M, Schmid-Schönbein H, Skalak R.
    Biophys J; 1981 Jun 22; 34(3):409-22. PubMed ID: 7248469
    [Abstract] [Full Text] [Related]

  • 37. A tethered adhesive particle model of two-dimensional elasticity and its application to the erythrocyte membrane.
    Feng S, MacDonald RC.
    Biophys J; 1996 Feb 22; 70(2):857-67. PubMed ID: 8789103
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.