These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Time course of release of catecholamines from individual vesicles during exocytosis at adrenal medullary cells. Wightman RM, Schroeder TJ, Finnegan JM, Ciolkowski EL, Pihel K. Biophys J; 1995 Jan; 68(1):383-90. PubMed ID: 7711264 [Abstract] [Full Text] [Related]
3. Interplay between membrane dynamics, diffusion and swelling pressure governs individual vesicular exocytotic events during release of adrenaline by chromaffin cells. Amatore C, Bouret Y, Travis ER, Wightman RM. Biochimie; 2000 May; 82(5):481-96. PubMed ID: 10865134 [Abstract] [Full Text] [Related]
4. Extracellular ionic composition alters kinetics of vesicular release of catecholamines and quantal size during exocytosis at adrenal medullary cells. Jankowski JA, Finnegan JM, Wightman RM. J Neurochem; 1994 Nov; 63(5):1739-47. PubMed ID: 7931329 [Abstract] [Full Text] [Related]
5. Exocytotic catecholamine release is not associated with cation flux through channels in the vesicle membrane but Na+ influx through the fusion pore. Gong LW, de Toledo GA, Lindau M. Nat Cell Biol; 2007 Aug; 9(8):915-22. PubMed ID: 17643118 [Abstract] [Full Text] [Related]
6. Correlation between vesicle quantal size and fusion pore release in chromaffin cell exocytosis. Amatore C, Arbault S, Bonifas I, Bouret Y, Erard M, Ewing AG, Sombers LA. Biophys J; 2005 Jun; 88(6):4411-20. PubMed ID: 15792983 [Abstract] [Full Text] [Related]
7. Control of fusion pore dynamics during exocytosis by Munc18. Fisher RJ, Pevsner J, Burgoyne RD. Science; 2001 Feb 02; 291(5505):875-8. PubMed ID: 11157167 [Abstract] [Full Text] [Related]
8. A new way for the analysis of the exocytosis. Sánchez JL, Brioso MA, Segura F, Borges R. Stud Health Technol Inform; 1999 Feb 02; 68():400-5. PubMed ID: 10724915 [Abstract] [Full Text] [Related]
9. Evidence against a possible involvement of the serine, and thiol proteases in the exocytotic mechanism of catecholamine secretion in cultured bovine adrenal medullary cells. Nakanishi A, Morita K, Oka M, Katsunuma N. Biochem Int; 1986 Nov 02; 13(5):799-807. PubMed ID: 3101693 [Abstract] [Full Text] [Related]
10. Nicotinic receptor-mediated catecholamine secretion from individual chromaffin cells. Chemical evidence for exocytosis. Leszczyszyn DJ, Jankowski JA, Viveros OH, Diliberto EJ, Near JA, Wightman RM. J Biol Chem; 1990 Sep 05; 265(25):14736-7. PubMed ID: 2394692 [Abstract] [Full Text] [Related]
11. Regulation of exocytosis in chromaffin cells by trans-insertion of lysophosphatidylcholine and arachidonic acid into the outer leaflet of the cell membrane. Amatore C, Arbault S, Bouret Y, Guille M, Lemaître F, Verchier Y. Chembiochem; 2006 Dec 05; 7(12):1998-2003. PubMed ID: 17086558 [Abstract] [Full Text] [Related]
12. Blockade by nanomolar resveratrol of quantal catecholamine release in chromaffin cells. Fernández-Morales JC, Yáñez M, Orallo F, Cortés L, González JC, Hernández-Guijo JM, García AG, de Diego AM. Mol Pharmacol; 2010 Oct 05; 78(4):734-44. PubMed ID: 20631052 [Abstract] [Full Text] [Related]
13. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, Near JA, Diliberto EJ, Viveros OH. Proc Natl Acad Sci U S A; 1991 Dec 01; 88(23):10754-8. PubMed ID: 1961743 [Abstract] [Full Text] [Related]
14. Capacitance flickers and pseudoflickers of small granules, measured in the cell-attached configuration. Lollike K, Borregaard N, Lindau M. Biophys J; 1998 Jul 01; 75(1):53-9. PubMed ID: 9649367 [Abstract] [Full Text] [Related]
15. Effects of external osmotic pressure on vesicular secretion from bovine adrenal medullary cells. Borges R, Travis ER, Hochstetler SE, Wightman RM. J Biol Chem; 1997 Mar 28; 272(13):8325-31. PubMed ID: 9079655 [Abstract] [Full Text] [Related]
16. Quantitative investigations of amperometric spike feet suggest different controlling factors of the fusion pore in exocytosis at chromaffin cells. Amatore C, Arbault S, Bonifas I, Guille M. Biophys Chem; 2009 Aug 28; 143(3):124-31. PubMed ID: 19501951 [Abstract] [Full Text] [Related]
17. Electrochemical imaging of fusion pore openings by electrochemical detector arrays. Hafez I, Kisler K, Berberian K, Dernick G, Valero V, Yong MG, Craighead HG, Lindau M. Proc Natl Acad Sci U S A; 2005 Sep 27; 102(39):13879-84. PubMed ID: 16172395 [Abstract] [Full Text] [Related]
18. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Chow RH, von Rüden L, Neher E. Nature; 1992 Mar 05; 356(6364):60-3. PubMed ID: 1538782 [Abstract] [Full Text] [Related]
19. Kinetic analysis of the triggered exocytosis/endocytosis secretory cycle in cultured bovine adrenal medullary cells. von Grafenstein H, Roberts CS, Baker PF. J Cell Biol; 1986 Dec 05; 103(6 Pt 1):2343-52. PubMed ID: 3782299 [Abstract] [Full Text] [Related]
20. Hydrophobic ions amplify the capacitive currents used to measure exocytotic fusion. Oberhauser AF, Fernandez JM. Biophys J; 1995 Aug 05; 69(2):451-9. PubMed ID: 8527659 [Abstract] [Full Text] [Related] Page: [Next] [New Search]