These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


387 related items for PubMed ID: 8793744

  • 1. Distribution and functional properties of glutamate receptors in the leech central nervous system.
    Dierkes PW, Hochstrate P, Schlue WR.
    J Neurophysiol; 1996 Jun; 75(6):2312-21. PubMed ID: 8793744
    [Abstract] [Full Text] [Related]

  • 2. Effects of glutamatergic agonists and antagonists on membrane potential and intracellular Na+ activity of leech glial and nerve cells.
    Dörner R, Zens M, Schlue WR.
    Brain Res; 1994 Nov 28; 665(1):47-53. PubMed ID: 7882017
    [Abstract] [Full Text] [Related]

  • 3. Intracellular Ca2+, Na+ and H+ transients evoked by kainate in the leech giant glial cells in situ.
    Munsch T, Deitmer JW.
    Neurosci Res; 1997 Jan 28; 27(1):45-56. PubMed ID: 9089698
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Mechanism of the kainate-induced intracellular acidification in leech Retzius neurons.
    Kilb W, Schlue WR.
    Brain Res; 1999 Apr 10; 824(2):168-82. PubMed ID: 10196447
    [Abstract] [Full Text] [Related]

  • 9. Glutamate and kainate increase intracellular sodium activity in leech neuropile glial cells.
    Ballanyi K, Dörner R, Schlue WR.
    Glia; 1989 Apr 10; 2(1):51-4. PubMed ID: 2565287
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Kainate/glutamate-induced changes in intracellular calcium and pH in leech glial cells.
    Deitmer JW, Munsch T.
    Neuroreport; 1992 Aug 10; 3(8):693-6. PubMed ID: 1355671
    [Abstract] [Full Text] [Related]

  • 12. Kainate responses of leech Retzius neurons in situ and in vitro.
    Löhrke S, Deitmer JW.
    J Neurobiol; 1996 Nov 10; 31(3):345-58. PubMed ID: 8910792
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Contribution of Ca(2+)-permeable AMPA/KA receptors to glutamate-induced Ca(2+) rise in embryonic lumbar motoneurons in situ.
    Metzger F, Kulik A, Sendtner M, Ballanyi K.
    J Neurophysiol; 2000 Jan 10; 83(1):50-9. PubMed ID: 10634852
    [Abstract] [Full Text] [Related]

  • 16. The ionic mechanisms associated with the excitatory response of kainate, L-glutamate, quisqualate, ibotenate, AMPA and methyltetrahydrofolate on leech Retzius cells.
    Mat Jais AM, Kerkut GA, Walker RJ.
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984 Jan 10; 77(1):115-26. PubMed ID: 6141864
    [Abstract] [Full Text] [Related]

  • 17. AMPA/kainate receptor activation in murine oligodendrocyte precursor cells leads to activation of a cation conductance, calcium influx and blockade of delayed rectifying K+ channels.
    Borges K, Ohlemeyer C, Trotter J, Kettenmann H.
    Neuroscience; 1994 Nov 10; 63(1):135-49. PubMed ID: 7898644
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Glutamatergic receptors regulate expression, phosphorylation and accumulation of neurofilaments in spinal cord neurons.
    Vartiainen N, Tikka T, Keinänen R, Chan PH, Koistinaho J.
    Neuroscience; 1999 Nov 10; 93(3):1123-33. PubMed ID: 10473276
    [Abstract] [Full Text] [Related]

  • 20. Carbamazepine inhibits L-type Ca2+ channels in cultured rat hippocampal neurons stimulated with glutamate receptor agonists.
    Ambrósio AF, Silva AP, Malva JO, Soares-da-Silva P, Carvalho AP, Carvalho CM.
    Neuropharmacology; 1999 Sep 10; 38(9):1349-59. PubMed ID: 10471089
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.