These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


129 related items for PubMed ID: 8814621

  • 1. The pattern of stimulation influences the amount of oscillatory work done by frog muscle.
    Stevens ED.
    J Physiol; 1996 Jul 01; 494 ( Pt 1)(Pt 1):279-85. PubMed ID: 8814621
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Effect of pH and stimulus phase on work done by isolated frog sartorius muscle during cyclical contraction.
    Stevens ED.
    J Muscle Res Cell Motil; 1988 Aug 01; 9(4):329-33. PubMed ID: 3265421
    [Abstract] [Full Text] [Related]

  • 6. Stimulation pulse characteristics and electrode configuration determine site of excitation in isolated mammalian skeletal muscle: implications for fatigue.
    Cairns SP, Chin ER, Renaud JM.
    J Appl Physiol (1985); 2007 Jul 01; 103(1):359-68. PubMed ID: 17412789
    [Abstract] [Full Text] [Related]

  • 7. Doublet potentiation during eccentric and concentric contractions of cat soleus muscle.
    Sandercock TG, Heckman CJ.
    J Appl Physiol (1985); 1997 Apr 01; 82(4):1219-28. PubMed ID: 9104859
    [Abstract] [Full Text] [Related]

  • 8. Force response of rat soleus muscle to variable-frequency train stimulation.
    Binder-Macleod SA, Barrish WJ.
    J Neurophysiol; 1992 Oct 01; 68(4):1068-78. PubMed ID: 1432068
    [Abstract] [Full Text] [Related]

  • 9. Pattern of pulses that maximize force output from single human thenar motor units.
    Thomas CK, Johansson RS, Bigland-Ritchie B.
    J Neurophysiol; 1999 Dec 01; 82(6):3188-95. PubMed ID: 10601452
    [Abstract] [Full Text] [Related]

  • 10. Influence of extent of muscle shortening and heart rate on work from frog heart trabeculae.
    Syme DA.
    Am J Physiol; 1993 Aug 01; 265(2 Pt 2):R310-9. PubMed ID: 8368384
    [Abstract] [Full Text] [Related]

  • 11. Force-frequency relationship and potentiation in mammalian skeletal muscle.
    MacIntosh BR, Willis JC.
    J Appl Physiol (1985); 2000 Jun 01; 88(6):2088-96. PubMed ID: 10846022
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Effect of phase of stimulation on acute damage caused by eccentric contractions in mouse soleus muscle.
    Stevens ED.
    J Appl Physiol (1985); 1996 Jun 01; 80(6):1958-62. PubMed ID: 8806900
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Fatigue and recovery of dynamic and steady-state performance in frog skeletal muscle.
    Syme DA, Tonks DM.
    Am J Physiol Regul Integr Comp Physiol; 2004 May 01; 286(5):R916-26. PubMed ID: 14726426
    [Abstract] [Full Text] [Related]

  • 18. Force enhancement in single skeletal muscle fibres on the ascending limb of the force-length relationship.
    Peterson DR, Rassier DE, Herzog W.
    J Exp Biol; 2004 Jul 01; 207(Pt 16):2787-91. PubMed ID: 15235007
    [Abstract] [Full Text] [Related]

  • 19. A mathematical model that predicts the force-frequency relationship of human skeletal muscle.
    Ding J, Wexler AS, Binder-Macleod SA.
    Muscle Nerve; 2002 Oct 01; 26(4):477-85. PubMed ID: 12362412
    [Abstract] [Full Text] [Related]

  • 20. The input-output relations of skeletal muscle.
    Kwende MM, Jarvis JC, Salmons S.
    Proc Biol Sci; 1995 Aug 22; 261(1361):193-201. PubMed ID: 7568272
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.