These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
119 related items for PubMed ID: 8820906
21. The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Cassarino DS, Parks JK, Parker WD, Bennett JP. Biochim Biophys Acta; 1999 Jan 06; 1453(1):49-62. PubMed ID: 9989245 [Abstract] [Full Text] [Related]
22. Carrier-mediated efflux of [3H]dopamine and [3H]1-methyl-4-phenylpyridine: effect of ascorbic acid. Debler EA, Sershen H, Hashim A, Lajtha A, Reith ME. Synapse; 1991 Feb 06; 7(2):99-105. PubMed ID: 2011830 [Abstract] [Full Text] [Related]
23. Structure-neurotoxicity trends of analogues of 1-methyl-4-phenylpyridinium (MPP+), the cytotoxic metabolite of the dopaminergic neurotoxin MPTP. Arora PK, Riachi NJ, Fiedler GC, Singh MP, Abdallah F, Harik SI, Sayre LM. Life Sci; 1990 Feb 06; 46(5):379-90. PubMed ID: 2304377 [Abstract] [Full Text] [Related]
24. Mitochondrial UCP4 attenuates MPP+ - and dopamine-induced oxidative stress, mitochondrial depolarization, and ATP deficiency in neurons and is interlinked with UCP2 expression. Chu AC, Ho PW, Kwok KH, Ho JW, Chan KH, Liu HF, Kung MH, Ramsden DB, Ho SL. Free Radic Biol Med; 2009 Mar 15; 46(6):810-20. PubMed ID: 19150400 [Abstract] [Full Text] [Related]
25. Inward transport of [3H]-1-methyl-4-phenylpyridinium in rat isolated hepatocytes: putative involvement of a P-glycoprotein transporter. Martel F, Martins MJ, Hipólito-Reis C, Azevedo I. Br J Pharmacol; 1996 Dec 15; 119(8):1519-24. PubMed ID: 8982496 [Abstract] [Full Text] [Related]
26. D-(+)-glucose rescue against 1-methyl-4-phenylpyridinium toxicity through anaerobic glycolysis in neuroblastoma cells. Mazzio E, Soliman KF. Brain Res; 2003 Feb 07; 962(1-2):48-60. PubMed ID: 12543455 [Abstract] [Full Text] [Related]
27. Characterization of a putatively vesicular binding site for [3H]MPP+ in mouse striatal membranes. Del Zompo M, Piccardi MP, Ruiu S, Corsini GU, Vaccari A. Brain Res; 1992 Feb 07; 571(2):354-7. PubMed ID: 1611504 [Abstract] [Full Text] [Related]
28. Uncoupling of ATP-depletion and cell death in human dopaminergic neurons. Pöltl D, Schildknecht S, Karreman C, Leist M. Neurotoxicology; 2012 Aug 07; 33(4):769-79. PubMed ID: 22206971 [Abstract] [Full Text] [Related]
29. 1-methyl-4-phenylpyridinium (MPP+) analogs: in vivo neurotoxicity and inhibition of striatal synaptosomal dopamine uptake. Johnson EA, Wu EY, Rollema H, Booth RG, Trevor AJ, Castagnoli N. Eur J Pharmacol; 1989 Jul 04; 166(1):65-74. PubMed ID: 2806366 [Abstract] [Full Text] [Related]
30. The neurotoxin 1-methyl-4-phenylpyridinium is a substrate for the canalicular organic cation/H+ exchanger. Moseley RH, Zugger LJ, Van Dyke RW. J Pharmacol Exp Ther; 1997 Apr 04; 281(1):34-40. PubMed ID: 9103477 [Abstract] [Full Text] [Related]
31. Intrasynaptosomal compartmentation of calcium during depolarization-induced calcium uptake across the plasma membrane. Akerman KE, Nicholls DG. Biochim Biophys Acta; 1981 Jul 06; 645(1):41-8. PubMed ID: 7260086 [Abstract] [Full Text] [Related]
32. Effect of ascorbic acid on the synaptosomal uptake of [3H]MPP+, [3H]dopamine, and [14C]GABA. Sershen H, Debler EA, Lajtha A. J Neurosci Res; 1987 Jul 06; 17(3):298-301. PubMed ID: 3496464 [Abstract] [Full Text] [Related]
33. Structural significance of azaheterocyclic amines related to Parkinson's disease for dopamine transporter. Matsubara K, Senda T, Uezono T, Fukushima S, Ohta S, Igarashi K, Naoi M, Yamashita Y, Ohtaki K, Hayase N, Akutsu S, Kimura K. Eur J Pharmacol; 1998 May 01; 348(1):77-84. PubMed ID: 9650834 [Abstract] [Full Text] [Related]
34. Inhibition of uptake of 1-methyl-4-phenylpyridinium ion and dopamine in striatal synaptosomes by tobacco smoke components. Carr LA, Basham JK, York BK, Rowell PP. Eur J Pharmacol; 1992 May 14; 215(2-3):285-7. PubMed ID: 1396992 [Abstract] [Full Text] [Related]
35. Inhibition of ATP synthesis by 1-methyl-4-phenylpyridinium ion (MPP+) in isolated mitochondria from mouse brains. Mizuno Y, Suzuki K, Sone N, Saitoh T. Neurosci Lett; 1987 Oct 16; 81(1-2):204-8. PubMed ID: 3501080 [Abstract] [Full Text] [Related]
36. Anaerobic glycolysis protection against 1-methy-4-phenylpyridinium (MPP+) toxicity in C6 glioma cells. Williams ZR, Goodman CB, Soliman KF. Neurochem Res; 2007 Jun 16; 32(6):1071-80. PubMed ID: 17401669 [Abstract] [Full Text] [Related]
37. Enhancement by tetraphenylboron of inhibition of mitochondrial respiration induced by 1-methyl-4-phenylpyridinium ion (MPP(+)). Aiuchi T, Shirane Y, Kinemuchi H, Arai Y, Nakaya K, Nakamura Y. Neurochem Int; 1988 Jun 16; 12(4):525-31. PubMed ID: 20501261 [Abstract] [Full Text] [Related]
38. Effects of 1-methyl-4-phenylpyridinium on isolated rat brain mitochondria: evidence for a primary involvement of energy depletion. Bates TE, Heales SJ, Davies SE, Boakye P, Clark JB. J Neurochem; 1994 Aug 16; 63(2):640-8. PubMed ID: 8035188 [Abstract] [Full Text] [Related]
39. Biphasic mechanism of the toxicity induced by 1-methyl-4-phenylpyridinium ion (MPP+) as revealed by dynamic changes in glucose metabolism in rat brain slices. Maruoka N, Murata T, Omata N, Takashima Y, Fujibayashi Y, Wada Y. Neurotoxicology; 2007 May 16; 28(3):672-8. PubMed ID: 17391768 [Abstract] [Full Text] [Related]
40. Effect of 1-methyl-4-phenylpyridinium (MPP+) on mitochondrial membrane potential in cerebellar neurons: interaction with the NMDA receptor. Camins A, Sureda FX, Gabriel C, Pallàs M, Escubedo E, Camarasa J. J Neural Transm (Vienna); 1997 May 16; 104(6-7):569-77. PubMed ID: 9444558 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]