These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
210 related items for PubMed ID: 8821137
21. High-threshold Ca2+ currents in rat hippocampal interneurones and their selective inhibition by activation of GABA(B) receptors. Lambert NA, Wilson WA. J Physiol; 1996 Apr 01; 492 ( Pt 1)(Pt 1):115-27. PubMed ID: 8730588 [Abstract] [Full Text] [Related]
22. Opioid presynaptic disinhibition of the midbrain periaqueductal grey descending analgesic pathway. Lau BK, Winters BL, Vaughan CW. Br J Pharmacol; 2020 May 01; 177(10):2320-2332. PubMed ID: 31971607 [Abstract] [Full Text] [Related]
24. How opioids inhibit GABA-mediated neurotransmission. Vaughan CW, Ingram SL, Connor MA, Christie MJ. Nature; 1997 Dec 11; 390(6660):611-4. PubMed ID: 9403690 [Abstract] [Full Text] [Related]
25. Positive allosteric modulation of the cannabinoid type-1 receptor (CB1R) in periaqueductal gray (PAG) antagonizes anti-nociceptive and cellular effects of a mu-opioid receptor agonist in morphine-withdrawn rats. Datta U, Kelley LK, Middleton JW, Gilpin NW. Psychopharmacology (Berl); 2020 Dec 11; 237(12):3729-3739. PubMed ID: 32857187 [Abstract] [Full Text] [Related]
26. Endogenous opioid peptides acting at mu-opioid receptors in the dorsal horn contribute to midbrain modulation of spinal nociceptive neurons. Budai D, Fields HL. J Neurophysiol; 1998 Feb 11; 79(2):677-87. PubMed ID: 9463431 [Abstract] [Full Text] [Related]
27. Systemic morphine-induced release of serotonin in the rostroventral medulla is not mimicked by morphine microinjection into the periaqueductal gray. Taylor BK, Basbaum AI. J Neurochem; 2003 Sep 11; 86(5):1129-41. PubMed ID: 12911621 [Abstract] [Full Text] [Related]
28. Repeated morphine treatment alters cannabinoid modulation of GABAergic synaptic transmission within the rat periaqueductal grey. Wilson-Poe AR, Lau BK, Vaughan CW. Br J Pharmacol; 2015 Jan 11; 172(2):681-90. PubMed ID: 24916363 [Abstract] [Full Text] [Related]
29. Activation of mu-opioid receptors inhibits synaptic inputs to spinally projecting rostral ventromedial medulla neurons. Finnegan TF, Li DP, Chen SR, Pan HL. J Pharmacol Exp Ther; 2004 May 11; 309(2):476-83. PubMed ID: 14724227 [Abstract] [Full Text] [Related]
30. Presynaptic and postsynaptic relations of mu-opioid receptors to gamma-aminobutyric acid-immunoreactive and medullary-projecting periaqueductal gray neurons. Commons KG, Aicher SA, Kow LM, Pfaff DW. J Comp Neurol; 2000 Apr 17; 419(4):532-42. PubMed ID: 10742719 [Abstract] [Full Text] [Related]
31. Synergistic mu-opioid and 5-HT1A presynaptic inhibition of GABA release in rat periaqueductal gray neurons. Kishimoto K, Koyama S, Akaike N. Neuropharmacology; 2001 Oct 17; 41(5):529-38. PubMed ID: 11587707 [Abstract] [Full Text] [Related]
32. The mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) [but not D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP)] produces a nonopioid receptor-mediated increase in K+ conductance of rat locus ceruleus neurons. Chieng B, Connor M, Christie MJ. Mol Pharmacol; 1996 Sep 17; 50(3):650-5. PubMed ID: 8794906 [Abstract] [Full Text] [Related]
33. GABA(B), opioid and alpha2 receptor inhibition of calcium channels in acutely-dissociated locus coeruleus neurones. Chieng B, Bekkers JM. Br J Pharmacol; 1999 Aug 17; 127(7):1533-8. PubMed ID: 10455306 [Abstract] [Full Text] [Related]
34. Local opioid withdrawal in rat single periaqueductal gray neurons in vitro. Chieng B, Christie MD. J Neurosci; 1996 Nov 15; 16(22):7128-36. PubMed ID: 8929422 [Abstract] [Full Text] [Related]
35. Activation of mu opioid receptors in the ventrolateral periaqueductal gray inhibits reflex micturition in anesthetized rats. Matsumoto S, Levendusky MC, Longhurst PA, Levin RM, Millington WR. Neurosci Lett; 2004 Jun 10; 363(2):116-9. PubMed ID: 15172097 [Abstract] [Full Text] [Related]
36. Postnatal maturation of endogenous opioid systems within the periaqueductal grey and spinal dorsal horn of the rat. Kwok CHT, Devonshire IM, Bennett AJ, Hathway GJ. Pain; 2014 Jan 10; 155(1):168-178. PubMed ID: 24076162 [Abstract] [Full Text] [Related]
37. Cornea-responsive medullary dorsal horn neurons: modulation by local opioids and projections to thalamus and brain stem. Hirata H, Takeshita S, Hu JW, Bereiter DA. J Neurophysiol; 2000 Aug 10; 84(2):1050-61. PubMed ID: 10938327 [Abstract] [Full Text] [Related]
38. Neuronal cytochrome P450 activity and opioid analgesia: relevant sites and mechanisms. Hough LB, Nalwalk JW, Yang W, Ding X. Brain Res; 2015 Aug 07; 1616():10-8. PubMed ID: 25935691 [Abstract] [Full Text] [Related]
39. Enhancement of opioid inhibition of GABAergic synaptic transmission by cyclo-oxygenase inhibitors in rat periaqueductal grey neurones. Vaughan CW. Br J Pharmacol; 1998 Apr 07; 123(8):1479-81. PubMed ID: 9605550 [Abstract] [Full Text] [Related]
40. Metamizol, a non-opioid analgesic, acts via endocannabinoids in the PAG-RVM axis during inflammation in rats. Escobar W, Ramirez K, Avila C, Limongi R, Vanegas H, Vazquez E. Eur J Pain; 2012 May 07; 16(5):676-89. PubMed ID: 22337336 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]