These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
238 related items for PubMed ID: 8823185
1. Alpha-helix dipoles and catalysis: absorption and Raman spectroscopic studies of acyl cysteine proteases. Doran JD, Carey PR. Biochemistry; 1996 Sep 24; 35(38):12495-502. PubMed ID: 8823185 [Abstract] [Full Text] [Related]
2. Electric fields in active sites: substrate switching from null to strong fields in thiol- and selenol-subtilisins. Dinakarpandian D, Shenoy BC, Hilvert D, McRee DE, McTigue M, Carey PR. Biochemistry; 1999 May 18; 38(20):6659-67. PubMed ID: 10350485 [Abstract] [Full Text] [Related]
3. Active site properties of the 3C proteinase from hepatitis A virus (a hybrid cysteine/serine protease) probed by Raman spectroscopy. Dinakarpandian D, Shenoy B, Pusztai-Carey M, Malcolm BA, Carey PR. Biochemistry; 1997 Apr 22; 36(16):4943-8. PubMed ID: 9125516 [Abstract] [Full Text] [Related]
4. Deacylation and reacylation for a series of acyl cysteine proteases, including acyl groups derived from novel chromophoric substrates. Doran JD, Tonge PJ, Mort JS, Carey PR. Biochemistry; 1996 Sep 24; 35(38):12487-94. PubMed ID: 8823184 [Abstract] [Full Text] [Related]
5. Raman study of the polarizing forces promoting catalysis in 4-chlorobenzoate-CoA dehalogenase. Clarkson J, Tonge PJ, Taylor KL, Dunaway-Mariano D, Carey PR. Biochemistry; 1997 Aug 19; 36(33):10192-9. PubMed ID: 9254617 [Abstract] [Full Text] [Related]
6. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation. Dong J, Lu X, Wei Y, Luo L, Dunaway-Mariano D, Carey PR. Biochemistry; 2003 Aug 12; 42(31):9482-90. PubMed ID: 12899635 [Abstract] [Full Text] [Related]
7. Details of the acyl-enzyme intermediate and the oxyanion hole in serine protease catalysis. Whiting AK, Peticolas WL. Biochemistry; 1994 Jan 18; 33(2):552-61. PubMed ID: 8286385 [Abstract] [Full Text] [Related]
8. Molecular structure of 5-methyl thiophene acryloyl ethyl thiolester: a vibrational spectroscopic and density functional theory study. Dinakarpandian D, Carey PR. Biospectroscopy; 1999 Jan 18; 5(4):201-18. PubMed ID: 10478951 [Abstract] [Full Text] [Related]
9. Length of the acyl carbonyl bond in acyl-serine proteases correlates with reactivity. Tonge PJ, Carey PR. Biochemistry; 1990 Dec 04; 29(48):10723-7. PubMed ID: 2271679 [Abstract] [Full Text] [Related]
10. Probing hydrogen-bonding interactions in the active site of medium-chain acyl-CoA dehydrogenase using Raman spectroscopy. Wu J, Bell AF, Luo L, Stephens AW, Stankovich MT, Tonge PJ. Biochemistry; 2003 Oct 14; 42(40):11846-56. PubMed ID: 14529297 [Abstract] [Full Text] [Related]
11. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects. Schneck JL, Villa JP, McDevitt P, McQueney MS, Thrall SH, Meek TD. Biochemistry; 2008 Aug 19; 47(33):8697-710. PubMed ID: 18656960 [Abstract] [Full Text] [Related]
12. Variation in the pH-dependent pre-steady-state and steady-state kinetic characteristics of cysteine-proteinase mechanism: evidence for electrostatic modulation of catalytic-site function by the neighbouring carboxylate anion. Hussain S, Pinitglang S, Bailey TS, Reid JD, Noble MA, Resmini M, Thomas EW, Greaves RB, Verma CS, Brocklehurst K. Biochem J; 2003 Jun 15; 372(Pt 3):735-46. PubMed ID: 12643810 [Abstract] [Full Text] [Related]
13. Investigation of substrate activation by 4-chlorobenzoyl-coenzyme A dehalogenase. Taylor KL, Xiang H, Liu RQ, Yang G, Dunaway-Mariano D. Biochemistry; 1997 Feb 11; 36(6):1349-61. PubMed ID: 9063883 [Abstract] [Full Text] [Related]
14. Procatalytic ligand strain. Ionization and perturbation of 8-nitroxanthine at the urate oxidase active site. Doll C, Bell AF, Power N, Tonge PJ, Tipton PA. Biochemistry; 2005 Aug 30; 44(34):11440-6. PubMed ID: 16114880 [Abstract] [Full Text] [Related]
15. Molecular modeling of substrate-enzyme reactions for the cysteine protease papain. Lin Y, Welsh WJ. J Mol Graph; 1996 Apr 30; 14(2):62-72, 92-3. PubMed ID: 8835773 [Abstract] [Full Text] [Related]
16. Structural insights into the substrate specificity and activity of ervatamins, the papain-like cysteine proteases from a tropical plant, Ervatamia coronaria. Ghosh R, Chakraborty S, Chakrabarti C, Dattagupta JK, Biswas S. FEBS J; 2008 Feb 30; 275(3):421-34. PubMed ID: 18167146 [Abstract] [Full Text] [Related]
17. Structure, mechanism, and conformational dynamics of O-acetylserine sulfhydrylase from Salmonella typhimurium: comparison of A and B isozymes. Chattopadhyay A, Meier M, Ivaninskii S, Burkhard P, Speroni F, Campanini B, Bettati S, Mozzarelli A, Rabeh WM, Li L, Cook PF. Biochemistry; 2007 Jul 17; 46(28):8315-30. PubMed ID: 17583914 [Abstract] [Full Text] [Related]