These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
732 related items for PubMed ID: 8833116
1. Neurochemical development of the hippocampal region in the fetal rhesus monkey, III: calbindin-D28K, calretinin and parvalbumin with special mention of cajal-retzius cells and the retrosplenial cortex. Berger B, Alvarez C. J Comp Neurol; 1996 Mar 18; 366(4):674-99. PubMed ID: 8833116 [Abstract] [Full Text] [Related]
2. Neurochemical development of the hippocampal region in the fetal rhesus monkey. I. Early appearance of peptides, calcium-binding proteins, DARPP-32, and monoamine innervation in the entorhinal cortex during the first half of gestation (E47 to E90). Berger B, Alvarez C, Goldman-Rakic PS. Hippocampus; 1993 Jul 18; 3(3):279-305. PubMed ID: 8353610 [Abstract] [Full Text] [Related]
3. Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: distribution and morphology. Condé F, Lund JS, Jacobowitz DM, Baimbridge KG, Lewis DA. J Comp Neurol; 1994 Mar 01; 341(1):95-116. PubMed ID: 8006226 [Abstract] [Full Text] [Related]
4. Calretinin is present in non-pyramidal cells of the rat hippocampus--II. Co-existence with other calcium binding proteins and GABA. Miettinen R, Gulyás AI, Baimbridge KG, Jacobowitz DM, Freund TF. Neuroscience; 1992 Mar 01; 48(1):29-43. PubMed ID: 1584423 [Abstract] [Full Text] [Related]
5. Calretinin immunoreactivity in the monkey hippocampal formation--I. Light and electron microscopic characteristics and co-localization with other calcium-binding proteins. Seress L, Nitsch R, Leranth C. Neuroscience; 1993 Aug 01; 55(3):775-96. PubMed ID: 8413936 [Abstract] [Full Text] [Related]
6. Immunocytochemical localization of calcium-binding proteins, calbindin D28K-, calretinin-, and parvalbumin-containing neurons in the dog visual cortex. Yu SH, Lee JY, Jeon CJ. Zoolog Sci; 2011 Sep 01; 28(9):694-702. PubMed ID: 21882959 [Abstract] [Full Text] [Related]
7. Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. McDonald AJ, Mascagni F. Neuroscience; 2001 Sep 01; 105(3):681-93. PubMed ID: 11516833 [Abstract] [Full Text] [Related]
8. Distribution of parvalbumin-, calretinin-, and calbindin-D28k-immunoreactive neurons and fibers in the human entorhinal cortex. Mikkonen M, Soininen H, Pitkänen A. J Comp Neurol; 1997 Nov 10; 388(1):64-88. PubMed ID: 9364239 [Abstract] [Full Text] [Related]
9. Transient co-localization of calretinin, parvalbumin, and calbindin-D28K in developing visual cortex of monkey. Yan YH, Van Brederode JF, Hendrickson AE. J Neurocytol; 1995 Nov 10; 24(11):825-37. PubMed ID: 8576712 [Abstract] [Full Text] [Related]
10. Differential expression of calretinin, calbindin D28K and parvalbumin in the developing human cerebellum. Yew DT, Luo CB, Heizmann CW, Chan WY. Brain Res Dev Brain Res; 1997 Oct 20; 103(1):37-45. PubMed ID: 9370058 [Abstract] [Full Text] [Related]
11. Distribution of neurofilament protein and calcium-binding proteins parvalbumin, calbindin, and calretinin in the canine hippocampus. Hof PR, Rosenthal RE, Fiskum G. J Chem Neuroanat; 1996 Jul 20; 11(1):1-12. PubMed ID: 8841885 [Abstract] [Full Text] [Related]
12. Postnatal development of calcium-binding proteins immunoreactivity (parvalbumin, calbindin, calretinin) in the human entorhinal cortex. Grateron L, Cebada-Sanchez S, Marcos P, Mohedano-Moriano A, Insausti AM, Muñoz M, Arroyo-Jimenez MM, Martinez-Marcos A, Artacho-Perula E, Blaizot X, Insausti R. J Chem Neuroanat; 2003 Dec 20; 26(4):311-6. PubMed ID: 14729133 [Abstract] [Full Text] [Related]
13. Neurochemical development of the hippocampal region in the fetal rhesus monkey. II. Immunocytochemistry of peptides, calcium-binding proteins, DARPP-32, and monoamine innervation in the entorhinal cortex by the end of gestation. Berger B, Alvarez C. Hippocampus; 1994 Feb 20; 4(1):85-114. PubMed ID: 7914799 [Abstract] [Full Text] [Related]
14. Retrosplenial/presubicular continuum in primates: a developmental approach in fetal macaques using neurotensin and parvalbumin as markers. Berger B, Alvarez C, Pelaprat D. Brain Res Dev Brain Res; 1997 Jul 18; 101(1-2):207-24. PubMed ID: 9263594 [Abstract] [Full Text] [Related]
15. Cajal-Retzius neurons in developing monkey neocortex show immunoreactivity for calcium binding proteins. Huntley GW, Jones EG. J Neurocytol; 1990 Apr 18; 19(2):200-12. PubMed ID: 2358829 [Abstract] [Full Text] [Related]
16. Postnatal development of parvalbumin and calbindin D28K immunoreactivities in the cerebral cortex of the rat. Alcántara S, Ferrer I, Soriano E. Anat Embryol (Berl); 1993 Jul 18; 188(1):63-73. PubMed ID: 8214625 [Abstract] [Full Text] [Related]
17. Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer's disease. Mikkonen M, Alafuzoff I, Tapiola T, Soininen H, Miettinen R. Neuroscience; 1999 Jul 18; 92(2):515-32. PubMed ID: 10408601 [Abstract] [Full Text] [Related]
18. Distribution of the calcium-binding proteins calbindin D-28K and parvalbumin in the superior colliculus of adult and neonatal cat and rhesus monkey. McHaffie JG, Anstrom KK, Gabriele ML, Stein BE. Exp Brain Res; 2001 Dec 18; 141(4):460-70. PubMed ID: 11810140 [Abstract] [Full Text] [Related]
19. Neurofilament and calcium-binding proteins in the human cingulate cortex. Nimchinsky EA, Vogt BA, Morrison JH, Hof PR. J Comp Neurol; 1997 Aug 11; 384(4):597-620. PubMed ID: 9259492 [Abstract] [Full Text] [Related]