These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
133 related items for PubMed ID: 8839454
1. Low levels of glucose-6-phosphate hydrolysis in the sarcoplasmic reticulum of skeletal muscle: involvement of glucose-6-phosphatase. Gamberucci A, Marcolongo P, Fulceri R, Giunti R, Watkins SL, Waddell ID, Burchell A, Benedetti A. Mol Membr Biol; 1996; 13(2):103-8. PubMed ID: 8839454 [Abstract] [Full Text] [Related]
2. Disturbances of the sarcoplasmic reticulum and transverse tubular system in 24-h electrostimulated fast-twitch skeletal muscle. Frías JA, Cadefau JA, Prats C, Morán M, Megías A, Cussó R. Biochim Biophys Acta; 2005 Feb 01; 1668(1):64-74. PubMed ID: 15670732 [Abstract] [Full Text] [Related]
3. Interaction of mannose-6-phosphate with the hysteretic transition in glucose-6-phosphate hydrolysis in intact liver microsomes. Vidal H, Berteloot A, Larue MJ, St-Denis JF, van de Werve G. FEBS Lett; 1992 May 18; 302(3):197-200. PubMed ID: 1318223 [Abstract] [Full Text] [Related]
4. Evidence that the transit of glucose into liver microsomes is not required for functional glucose-6-phosphatase. Annabi B, van de Werve G. Biochem Biophys Res Commun; 1997 Jul 30; 236(3):808-13. PubMed ID: 9245738 [Abstract] [Full Text] [Related]
5. Glucose-6-phosphate and Ca2+ sequestration are mutually enhanced in microsomes from liver, brain, and heart. Chen PY, Csutora P, Veyna-Burke NA, Marchase RB. Diabetes; 1998 Jun 30; 47(6):874-81. PubMed ID: 9604862 [Abstract] [Full Text] [Related]
6. Demonstration of a metabolically active glucose-6-phosphate pool in the lumen of liver microsomal vesicles. Bánhegyi G, Marcolongo P, Fulceri R, Hinds C, Burchell A, Benedetti A. J Biol Chem; 1997 May 23; 272(21):13584-90. PubMed ID: 9153206 [Abstract] [Full Text] [Related]
7. The characteristics of liver glucose-6-phosphatase in the envelope of isolated nuclei and microsomes are identical. Arion WJ, Schulz LO, Lange AJ, Telford JN, Walls HE. J Biol Chem; 1983 Oct 25; 258(20):12661-9. PubMed ID: 6313670 [Abstract] [Full Text] [Related]
8. Phenobarbital-induced alterations in the activities of the transport and hydrolytic components of the glucose-6-phosphatase system in smooth and rough subfractions of the rat hepatic endoplasmic reticulum. Arion WJ, Schulz LO, Walls HE. Arch Biochem Biophys; 1987 Feb 01; 252(2):467-77. PubMed ID: 3028267 [Abstract] [Full Text] [Related]
9. Microsomal membrane permeability and the hepatic glucose-6-phosphatase system. Interactions of the system with D-mannose 6-phosphate and D-mannose. Arion WJ, Ballas LM, Lange AJ, Wallin BK. J Biol Chem; 1976 Aug 25; 251(16):4891-7. PubMed ID: 182683 [Abstract] [Full Text] [Related]
10. [Glucose-6-phosphatase from nuclear envelope in rat liver]. González-Mujica F. Invest Clin; 2008 Jun 25; 49(2):169-80. PubMed ID: 18717264 [Abstract] [Full Text] [Related]
11. Evidence that biosynthesis of phosphatidylethanolamine, phosphatidylcholine, and triacylglycerol occurs on the cytoplasmic side of microsomal vesicles. Coleman R, Bell RM. J Cell Biol; 1978 Jan 25; 76(1):245-53. PubMed ID: 618895 [Abstract] [Full Text] [Related]
12. Porin-type 1 proteins in sarcoplasmic reticulum and plasmalemma of striated muscle fibres. Junankar PR, Dulhunty AF, Curtis SM, Pace SM, Thinnes FP. J Muscle Res Cell Motil; 1995 Dec 25; 16(6):595-610. PubMed ID: 8750231 [Abstract] [Full Text] [Related]
13. Conformational change of the catalytic subunit of glucose-6-phosphatase in rat liver during the fetal-to-neonatal transition. Puskás F, Marcolongo P, Watkins SL, Mandl J, Allan BB, Houston P, Burchell A, Benedetti A, Bánhegyi G. J Biol Chem; 1999 Jan 01; 274(1):117-22. PubMed ID: 9867818 [Abstract] [Full Text] [Related]
14. Functional characterization of junctional terminal cisternae from mammalian fast skeletal muscle sarcoplasmic reticulum. Chu A, Volpe P, Costello B, Fleischer S. Biochemistry; 1986 Dec 16; 25(25):8315-24. PubMed ID: 2434126 [Abstract] [Full Text] [Related]
15. Thermal stability of microsomal glucose-6-phosphatase. Zakim D, Dannenberg A. J Biol Chem; 1990 Jan 05; 265(1):201-8. PubMed ID: 2152919 [Abstract] [Full Text] [Related]
16. Direct evidence for the involvement of two glucose 6-phosphate-binding sites in the glucose-6-phosphatase activity of intact liver microsomes. Characterization of T1, the microsomal glucose 6-phosphate transport protein by a direct binding assay. Arion WJ, Canfield WK, Callaway ES, Burger HJ, Hemmerle H, Schubert G, Herling AW, Oekonomopulos R. J Biol Chem; 1998 Mar 13; 273(11):6223-7. PubMed ID: 9497346 [Abstract] [Full Text] [Related]
17. Astrocytic glucose-6-phosphatase and the permeability of brain microsomes to glucose 6-phosphate. Forsyth RJ, Bartlett K, Burchell A, Scott HM, Eyre JA. Biochem J; 1993 Aug 15; 294 ( Pt 1)(Pt 1):145-51. PubMed ID: 8395816 [Abstract] [Full Text] [Related]
18. Heat production by skeletal muscles of rats and rabbits and utilization of glucose 6-phosphate as ATP regenerative system by rats and rabbits heart Ca2+-ATPase. Ketzer LA, de Meis L. Biochem Biophys Res Commun; 2008 Apr 25; 369(1):265-9. PubMed ID: 18201557 [Abstract] [Full Text] [Related]
19. Phosphate transport into the sarcoplasmic reticulum of skinned fibres from rat skeletal muscle. Fryer MW, West JM, Stephenson DG. J Muscle Res Cell Motil; 1997 Apr 25; 18(2):161-7. PubMed ID: 9127264 [Abstract] [Full Text] [Related]
20. Novel arguments in favor of the substrate-transport model of glucose-6-phosphatase. Gerin I, Noël G, Van Schaftingen E. Diabetes; 2001 Jul 25; 50(7):1531-8. PubMed ID: 11423473 [Abstract] [Full Text] [Related] Page: [Next] [New Search]