These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


312 related items for PubMed ID: 8842246

  • 21. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N, Bransky A, Dinnar U.
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [Abstract] [Full Text] [Related]

  • 22. Red blood cell deformation in shear flow. Effects of internal and external phase viscosity and of in vivo aging.
    Pfafferott C, Nash GB, Meiselman HJ.
    Biophys J; 1985 May; 47(5):695-704. PubMed ID: 4016189
    [Abstract] [Full Text] [Related]

  • 23. Biophysical approach. Theoretical models of deformability in blood flow.
    Skalak R.
    Scand J Clin Lab Invest Suppl; 1981 May; 156():55-8. PubMed ID: 6948400
    [Abstract] [Full Text] [Related]

  • 24. Structure and deformation properties of red blood cells: concepts and quantitative methods.
    Evans EA.
    Methods Enzymol; 1989 May; 173():3-35. PubMed ID: 2674613
    [Abstract] [Full Text] [Related]

  • 25. Numerical approach to the motion of a red blood cell in Couette flow.
    Sugihara M, Niimi H.
    Biorheology; 1984 May; 21(6):735-49. PubMed ID: 6518286
    [Abstract] [Full Text] [Related]

  • 26. The single erythrocyte rigidometer (SER) as a reference for RBC deformability.
    Kiesewetter H, Dauer U, Teitel P, Schmid-Schönbein H, Trapp R.
    Biorheology; 1982 May; 19(6):737-53. PubMed ID: 7184522
    [Abstract] [Full Text] [Related]

  • 27. The influence of red cell mechanical properties on flow through single capillary-sized pores.
    Frank RS, Hochmuth RM.
    J Biomech Eng; 1988 May; 110(2):155-60. PubMed ID: 3379936
    [Abstract] [Full Text] [Related]

  • 28. State diagram for wall adhesion of red blood cells in shear flow: from crawling to flipping.
    Dasanna AK, Fedosov DA, Gompper G, Schwarz US.
    Soft Matter; 2019 Jul 10; 15(27):5511-5520. PubMed ID: 31241632
    [Abstract] [Full Text] [Related]

  • 29. Red blood cell microrheology (clinical and pharmacological applications).
    Stoltz JF.
    Ric Clin Lab; 1983 Jul 10; 13 Suppl 3():53-70. PubMed ID: 6369496
    [Abstract] [Full Text] [Related]

  • 30. [Influence of heat-induced changes in the mechanical properties of the membrane on the filterability of human erythrocytes].
    Kucera W, Meier W, Lerche D.
    Biomed Biochim Acta; 1986 Jul 10; 45(3):353-8. PubMed ID: 3707554
    [Abstract] [Full Text] [Related]

  • 31. Influence of temperature on rheology of human erythrocytes.
    Sung KL, Chien S.
    Chin J Physiol; 1992 Jul 10; 35(2):81-94. PubMed ID: 1451575
    [Abstract] [Full Text] [Related]

  • 32. Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion.
    Tran-Son-Tay R, Sutera SP, Rao PR.
    Biophys J; 1984 Jul 10; 46(1):65-72. PubMed ID: 6743758
    [Abstract] [Full Text] [Related]

  • 33. Tank-treading and tumbling frequencies of capsules and red blood cells.
    Yazdani AZ, Kalluri RM, Bagchi P.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr 10; 83(4 Pt 2):046305. PubMed ID: 21599293
    [Abstract] [Full Text] [Related]

  • 34. Red blood cell: from its mechanics to its motion in shear flow.
    Viallat A, Abkarian M.
    Int J Lab Hematol; 2014 Jun 10; 36(3):237-43. PubMed ID: 24750669
    [Abstract] [Full Text] [Related]

  • 35. Red blood cell orientation in orbit C = 0.
    Bitbol M.
    Biophys J; 1986 May 10; 49(5):1055-68. PubMed ID: 3708090
    [Abstract] [Full Text] [Related]

  • 36. A model for red blood cell motion in glycocalyx-lined capillaries.
    Secomb TW, Hsu R, Pries AR.
    Am J Physiol; 1998 Mar 10; 274(3):H1016-22. PubMed ID: 9530216
    [Abstract] [Full Text] [Related]

  • 37. Flow-dependent rheological properties of blood in capillaries.
    Secomb TW.
    Microvasc Res; 1987 Jul 10; 34(1):46-58. PubMed ID: 3657604
    [Abstract] [Full Text] [Related]

  • 38. Temperature dependence of the viscoelastic recovery of red cell membrane.
    Hochmuth RM, Buxbaum KL, Evans EA.
    Biophys J; 1980 Jan 10; 29(1):177-82. PubMed ID: 7260246
    [Abstract] [Full Text] [Related]

  • 39. Shape memory of human red blood cells.
    Fischer TM.
    Biophys J; 2004 May 10; 86(5):3304-13. PubMed ID: 15111443
    [Abstract] [Full Text] [Related]

  • 40. Flow behavior of neonatal and adult erythrocytes in narrow capillaries.
    Stadler A, Linderkamp O.
    Microvasc Res; 1989 May 10; 37(3):267-79. PubMed ID: 2733599
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.