These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


321 related items for PubMed ID: 8845761

  • 1. Structural similarity between ornithine and aspartate transcarbamoylases of Escherichia coli: characterization of the active site and evidence for an interdomain carboxy-terminal helix in ornithine transcarbamoylase.
    Murata LB, Schachman HK.
    Protein Sci; 1996 Apr; 5(4):709-18. PubMed ID: 8845761
    [Abstract] [Full Text] [Related]

  • 2. Structural similarity between ornithine and aspartate transcarbamoylases of Escherichia coli: implications for domain switching.
    Murata LB, Schachman HK.
    Protein Sci; 1996 Apr; 5(4):719-28. PubMed ID: 8845762
    [Abstract] [Full Text] [Related]

  • 3. Crystal structure of Pseudomonas aeruginosa catabolic ornithine transcarbamoylase at 3.0-A resolution: a different oligomeric organization in the transcarbamoylase family.
    Villeret V, Tricot C, Stalon V, Dideberg O.
    Proc Natl Acad Sci U S A; 1995 Nov 07; 92(23):10762-6. PubMed ID: 7479879
    [Abstract] [Full Text] [Related]

  • 4. In vivo formation of active aspartate transcarbamoylase from complementing fragments of the catalytic polypeptide chains.
    Yang YR, Schachman HK.
    Protein Sci; 1993 Jun 07; 2(6):1013-23. PubMed ID: 8318886
    [Abstract] [Full Text] [Related]

  • 5. Role of a carboxyl-terminal helix in the assembly, interchain interactions, and stability of aspartate transcarbamoylase.
    Peterson CB, Schachman HK.
    Proc Natl Acad Sci U S A; 1991 Jan 15; 88(2):458-62. PubMed ID: 1899140
    [Abstract] [Full Text] [Related]

  • 6. Reconstruction of an enzyme by domain substitution effectively switches substrate specificity.
    Houghton JE, O'Donovan GA, Wild JR.
    Nature; 1989 Mar 09; 338(6211):172-4. PubMed ID: 2918938
    [Abstract] [Full Text] [Related]

  • 7. Charge neutralization in the active site of the catalytic trimer of aspartate transcarbamoylase promotes diverse structural changes.
    Endrizzi JA, Beernink PT.
    Protein Sci; 2017 Nov 09; 26(11):2221-2228. PubMed ID: 28833948
    [Abstract] [Full Text] [Related]

  • 8. Aspartate transcarbamoylase containing circularly permuted catalytic polypeptide chains.
    Yang YR, Schachman HK.
    Proc Natl Acad Sci U S A; 1993 Dec 15; 90(24):11980-4. PubMed ID: 8265657
    [Abstract] [Full Text] [Related]

  • 9. Structural modeling and electrostatic properties of aspartate transcarbamylase from Saccharomyces cerevisiae.
    Villoutreix BO, Spassov VZ, Atanasov BP, Hervé G, Ladjimi MM.
    Proteins; 1994 Jul 15; 19(3):230-43. PubMed ID: 7937736
    [Abstract] [Full Text] [Related]

  • 10. Comparative modeling of mammalian aspartate transcarbamylase.
    Scully JL, Evans DR.
    Proteins; 1991 Jul 15; 9(3):191-206. PubMed ID: 2006137
    [Abstract] [Full Text] [Related]

  • 11. Substrate-induced conformational change in a trimeric ornithine transcarbamoylase.
    Ha Y, McCann MT, Tuchman M, Allewell NM.
    Proc Natl Acad Sci U S A; 1997 Sep 02; 94(18):9550-5. PubMed ID: 9275160
    [Abstract] [Full Text] [Related]

  • 12. In vivo formation of allosteric aspartate transcarbamoylase containing circularly permuted catalytic polypeptide chains: implications for protein folding and assembly.
    Zhang P, Schachman HK.
    Protein Sci; 1996 Jul 02; 5(7):1290-300. PubMed ID: 8819162
    [Abstract] [Full Text] [Related]

  • 13. In vivo assembly of aspartate transcarbamoylase from fragmented and circularly permuted catalytic polypeptide chains.
    Ni X, Schachman HK.
    Protein Sci; 2001 Mar 02; 10(3):519-27. PubMed ID: 11344320
    [Abstract] [Full Text] [Related]

  • 14. Catabolic ornithine carbamoyltransferase of Pseudomonas aeruginosa. Importance of the N-terminal region for dodecameric structure and homotropic carbamoylphosphate cooperativity.
    Nguyen VT, Baker DP, Tricot C, Baur H, Villeret V, Dideberg O, Gigot D, Stalon V, Haas D.
    Eur J Biochem; 1996 Feb 15; 236(1):283-93. PubMed ID: 8617277
    [Abstract] [Full Text] [Related]

  • 15. A cooperative Escherichia coli aspartate transcarbamoylase without regulatory subunits .
    Mendes KR, Kantrowitz ER.
    Biochemistry; 2010 Sep 07; 49(35):7694-703. PubMed ID: 20681545
    [Abstract] [Full Text] [Related]

  • 16. Reconstitution of active catalytic trimer of aspartate transcarbamoylase from proteolytically cleaved polypeptide chains.
    Powers VM, Yang YR, Fogli MJ, Schachman HK.
    Protein Sci; 1993 Jun 07; 2(6):1001-12. PubMed ID: 8318885
    [Abstract] [Full Text] [Related]

  • 17. Association of the catalytic subunit of aspartate transcarbamoylase with a zinc-containing polypeptide fragment of the regulatory chain leads to increases in thermal stability.
    Peterson CB, Zhou BB, Hsieh D, Creager AN, Schachman HK.
    Protein Sci; 1994 Jun 07; 3(6):960-6. PubMed ID: 8069225
    [Abstract] [Full Text] [Related]

  • 18. Crystal structure of T state aspartate carbamoyltransferase of the hyperthermophilic archaeon Sulfolobus acidocaldarius.
    De Vos D, Van Petegem F, Remaut H, Legrain C, Glansdorff N, Van Beeumen JJ.
    J Mol Biol; 2004 Jun 11; 339(4):887-900. PubMed ID: 15165857
    [Abstract] [Full Text] [Related]

  • 19. Conformational Plasticity of the Active Site Entrance in E. coli Aspartate Transcarbamoylase and Its Implication in Feedback Regulation.
    Lei Z, Wang N, Tan H, Zheng J, Jia Z.
    Int J Mol Sci; 2020 Jan 03; 21(1):. PubMed ID: 31947715
    [Abstract] [Full Text] [Related]

  • 20. Shared active sites in oligomeric enzymes: model studies with defective mutants of aspartate transcarbamoylase produced by site-directed mutagenesis.
    Wente SR, Schachman HK.
    Proc Natl Acad Sci U S A; 1987 Jan 03; 84(1):31-5. PubMed ID: 3540957
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.