These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


436 related items for PubMed ID: 8848964

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Temporal organization of cerebral events: neuromagnetic studies of the sensorimotor system.
    Forss N, Silén T.
    Rev Neurol (Paris); 2001 Sep; 157(8-9 Pt 1):816-21. PubMed ID: 11677402
    [Abstract] [Full Text] [Related]

  • 25. [Function magnetic resonance imaging and diffusion tensor tractography in patients with brain gliomas involving motor areas: clinical application and outcome].
    Li ZX, Dai JP, Jiang T, Li SW, Sun YL, Liang XL, Gao PY.
    Zhonghua Wai Ke Za Zhi; 2006 Sep 15; 44(18):1275-9. PubMed ID: 17147897
    [Abstract] [Full Text] [Related]

  • 26. Bilateral motor resonance evoked by observation of a one-hand movement: role of the primary motor cortex.
    Borroni P, Montagna M, Cerri G, Baldissera F.
    Eur J Neurosci; 2008 Oct 15; 28(7):1427-35. PubMed ID: 18973569
    [Abstract] [Full Text] [Related]

  • 27. Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits.
    Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J.
    Eur J Neurosci; 2004 Apr 15; 19(7):1950-62. PubMed ID: 15078569
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Neural substrate for the effects of passive training on sensorimotor cortical representation: a study with functional magnetic resonance imaging in healthy subjects.
    Carel C, Loubinoux I, Boulanouar K, Manelfe C, Rascol O, Celsis P, Chollet F.
    J Cereb Blood Flow Metab; 2000 Mar 15; 20(3):478-84. PubMed ID: 10724112
    [Abstract] [Full Text] [Related]

  • 30. Evidence for a wide distribution of negative motor areas in the perirolandic cortex.
    Mikuni N, Ohara S, Ikeda A, Hayashi N, Nishida N, Taki J, Enatsu R, Matsumoto R, Shibasaki H, Hashimoto N.
    Clin Neurophysiol; 2006 Jan 15; 117(1):33-40. PubMed ID: 16314142
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. [Prospective comparison of functional magnetic resonance imaging and intraoperative motor evoked potential monitoring for cortical mapping of primary motor areas].
    Wu JS, Zhou LF, Chen W, Lang LQ, Liang WM, Gao GJ, Mao Y.
    Zhonghua Wai Ke Za Zhi; 2005 Sep 01; 43(17):1141-5. PubMed ID: 16194316
    [Abstract] [Full Text] [Related]

  • 36. Subregions within the supplementary motor area activated at different stages of movement preparation and execution.
    Lee KM, Chang KH, Roh JK.
    Neuroimage; 1999 Jan 01; 9(1):117-23. PubMed ID: 9918733
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.