These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
239 related items for PubMed ID: 8851921
21. Lesions of the amygdala, but not of the cerebellum or red nucleus, block conditioned fear as measured with the potentiated startle paradigm. Hitchcock J, Davis M. Behav Neurosci; 1986 Feb; 100(1):11-22. PubMed ID: 3954873 [Abstract] [Full Text] [Related]
22. Opposing roles of the amygdala and dorsolateral periaqueductal gray in fear-potentiated startle. Walker DL, Cassella JV, Lee Y, De Lima TC, Davis M. Neurosci Biobehav Rev; 1997 Nov; 21(6):743-53. PubMed ID: 9415899 [Abstract] [Full Text] [Related]
23. Decreased CCK(B) receptor binding in rat amygdala in animals demonstrating greater anxiety-like behavior. Wunderlich GR, Raymond R, DeSousa NJ, Nobrega JN, Vaccarino FJ. Psychopharmacology (Berl); 2002 Nov; 164(2):193-9. PubMed ID: 12404082 [Abstract] [Full Text] [Related]
24. Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle. Greba Q, Gifkins A, Kokkinidis L. Brain Res; 2001 Apr 27; 899(1-2):218-26. PubMed ID: 11311883 [Abstract] [Full Text] [Related]
25. Lack of a temporal gradient of retrograde amnesia in rats with amygdala lesions assessed with the fear-potentiated startle paradigm. Kim M, Davis M. Behav Neurosci; 1993 Dec 27; 107(6):1088-92. PubMed ID: 8136062 [Abstract] [Full Text] [Related]
26. Expression and conditioned inhibition of fear-potentiated startle after stimulation and blockade of AMPA/Kainate and GABA(A) receptors in the dorsal periaqueductal gray. Fendt M. Brain Res; 2000 Oct 13; 880(1-2):1-10. PubMed ID: 11032984 [Abstract] [Full Text] [Related]
27. The modulatory role of serotonin-1A receptors of the basolateral amygdala and dorsal periaqueductal gray on the impact of hormonal variation on the conditioned fear response. Sgobbi RF, Incrocci RM, Paliarin F, Nobre MJ. Neuroscience; 2024 Aug 30; 554():118-127. PubMed ID: 39019393 [Abstract] [Full Text] [Related]
28. Pharmacological and anatomical analysis of fear conditioning using the fear-potentiated startle paradigm. Davis M. Behav Neurosci; 1986 Dec 30; 100(6):814-24. PubMed ID: 3545257 [Abstract] [Full Text] [Related]
29. Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear. Walker DL, Davis M. J Neurosci; 1997 Dec 01; 17(23):9375-83. PubMed ID: 9364083 [Abstract] [Full Text] [Related]
30. Visual pathways involved in fear conditioning measured with fear-potentiated startle: behavioral and anatomic studies. Shi C, Davis M. J Neurosci; 2001 Dec 15; 21(24):9844-55. PubMed ID: 11739592 [Abstract] [Full Text] [Related]
31. Involvement of the dorsal periaqueductal gray in the loss of fear-potentiated startle accompanying high footshock training. Walker DL, Davis M. Behav Neurosci; 1997 Aug 15; 111(4):692-702. PubMed ID: 9267647 [Abstract] [Full Text] [Related]
32. Pharmacological and anatomical analysis of fear conditioning. Davis M. NIDA Res Monogr; 1990 Aug 15; 97():126-62. PubMed ID: 2247135 [Abstract] [Full Text] [Related]
33. Role of amygdala in conditioned and unconditioned fear generated in the periaqueductal gray. Oliveira LC, Nobre MJ, Brandão ML, Landeira-Fernandez J. Neuroreport; 2004 Oct 05; 15(14):2281-5. PubMed ID: 15371750 [Abstract] [Full Text] [Related]
34. The nucleus accumbens is not critically involved in mediating the effects of a safety signal on behavior. Josselyn SA, Falls WA, Gewirtz JC, Pistell P, Davis M. Neuropsychopharmacology; 2005 Jan 05; 30(1):17-26. PubMed ID: 15257308 [Abstract] [Full Text] [Related]
35. Sensitization of the startle reflex by footshock: blockade by lesions of the central nucleus of the amygdala or its efferent pathway to the brainstem. Hitchcock JM, Sananes CB, Davis M. Behav Neurosci; 1989 Jun 05; 103(3):509-18. PubMed ID: 2544201 [Abstract] [Full Text] [Related]
36. Lesions of the bed nucleus of the stria terminalis block sensitization of the acoustic startle reflex produced by repeated stress, but not fear-potentiated startle. Gewirtz JC, McNish KA, Davis M. Prog Neuropsychopharmacol Biol Psychiatry; 1998 May 05; 22(4):625-48. PubMed ID: 9682277 [Abstract] [Full Text] [Related]
37. Electrolytic, but not neurotoxic, lesions to the lateral tegmental tract increase acoustic startle amplitude and reduce startle stimulus-induced freezing. Leaton RN. Neurobiol Learn Mem; 2003 Jan 05; 79(1):89-98. PubMed ID: 12482683 [Abstract] [Full Text] [Related]
38. Role of the primate amygdala in fear-potentiated startle: effects of chronic lesions in the rhesus monkey. Antoniadis EA, Winslow JT, Davis M, Amaral DG. J Neurosci; 2007 Jul 11; 27(28):7386-96. PubMed ID: 17626199 [Abstract] [Full Text] [Related]
39. The involvement of ventral tegmental area cholinergic muscarinic receptors in classically conditioned fear expression as measured with fear-potentiated startle. Greba Q, Munro LJ, Kokkinidis L. Brain Res; 2000 Jul 07; 870(1-2):135-41. PubMed ID: 10869510 [Abstract] [Full Text] [Related]
40. Giant neurons in the rat reticular formation: a sensorimotor interface in the elementary acoustic startle circuit? Lingenhöhl K, Friauf E. J Neurosci; 1994 Mar 07; 14(3 Pt 1):1176-94. PubMed ID: 8120618 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]