These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
115 related items for PubMed ID: 8852426
1. The reductive conversion of the carcinogen chromium (VI) and its role in the formation of DNA lesions. Kortenkamp A, Casadevall M, Da Cruz Fresco P. Ann Clin Lab Sci; 1996; 26(2):160-75. PubMed ID: 8852426 [Abstract] [Full Text] [Related]
2. A role for molecular oxygen in the formation of DNA damage during the reduction of the carcinogen chromium (VI) by glutathione. Kortenkamp A, Casadevall M, Faux SP, Jenner A, Shayer RO, Woodbridge N, O'Brien P. Arch Biochem Biophys; 1996 May 15; 329(2):199-207. PubMed ID: 8638952 [Abstract] [Full Text] [Related]
3. Chromium(VI)-mediated DNA damage: oxidative pathways resulting in the formation of DNA breaks and abasic sites. Casadevall M, da Cruz Fresco P, Kortenkamp A. Chem Biol Interact; 1999 Nov 30; 123(2):117-32. PubMed ID: 10597905 [Abstract] [Full Text] [Related]
4. The reductive conversion of chromium (VI) by ascorbate gives rise to apurinic/apyrimidinic sites in isolated DNA. da Cruz Fresco P, Shacker F, Kortenkamp A. Chem Res Toxicol; 1995 Sep 30; 8(6):884-90. PubMed ID: 7492738 [Abstract] [Full Text] [Related]
5. Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach. Poljsak B, Gazdag Z, Jenko-Brinovec S, Fujs S, Pesti M, Bélagyi J, Plesnicar S, Raspor P. J Appl Toxicol; 2005 Sep 30; 25(6):535-48. PubMed ID: 16092082 [Abstract] [Full Text] [Related]
6. Intermediates produced in the reaction of chromium(VI) with dehydroascorbate cause single-strand breaks in plasmid DNA. Stearns DM, Wetterhahn KE. Chem Res Toxicol; 1997 Mar 30; 10(3):271-8. PubMed ID: 9084906 [Abstract] [Full Text] [Related]
7. Cr(IV) causes activation of nuclear transcription factor-kappa B, DNA strand breaks and dG hydroxylation via free radical reactions. Shi X, Ding M, Ye J, Wang S, Leonard SS, Zang L, Castranova V, Vallyathan V, Chiu A, Dalal N, Liu K. J Inorg Biochem; 1999 May 30; 75(1):37-44. PubMed ID: 10402675 [Abstract] [Full Text] [Related]
8. Influence of o-phenanthroline on DNA single-strand breaks, alkali-labile sites, glutathione reductase, and formation of chromium(V) in Chinese hamster V-79 cells treated with sodium chromate (VI). Sugiyama M, Tsuzuki K, Haramaki N. Arch Biochem Biophys; 1993 Sep 30; 305(2):261-6. PubMed ID: 8396886 [Abstract] [Full Text] [Related]
9. Induction of mutagenic DNA damage by chromium (VI) and glutathione. Liu S, Dixon K. Environ Mol Mutagen; 1996 Sep 30; 28(2):71-9. PubMed ID: 8844987 [Abstract] [Full Text] [Related]
10. Role of molecular oxygen in the generation of hydroxyl and superoxide anion radicals during enzymatic Cr(VI) reduction and its implication to Cr(VI)-induced carcinogenesis. Leonard S, Wang S, Zang L, Castranova V, Vallyathan V, Shi X. J Environ Pathol Toxicol Oncol; 2000 Sep 30; 19(1-2):49-60. PubMed ID: 10905508 [Abstract] [Full Text] [Related]
11. Potent protective effect of melatonin on chromium(VI)-induced DNA single-strand breaks, cytotoxicity, and lipid peroxidation in primary cultures of rat hepatocytes. Susa N, Ueno S, Furukawa Y, Ueda J, Sugiyama M. Toxicol Appl Pharmacol; 1997 Jun 30; 144(2):377-84. PubMed ID: 9194422 [Abstract] [Full Text] [Related]
12. The formation of DNA cleaving species during the reduction of chromate by ascorbate. da Cruz Fresco P, Kortenkamp A. Carcinogenesis; 1994 Sep 30; 15(9):1773-8. PubMed ID: 7923568 [Abstract] [Full Text] [Related]
13. Synthesis of Cr(IV)-GSH, its identification and its free hydroxyl radical generation: a model compound for Cr(VI) carcinogenicity. Liu KJ, Shi X, Dalal NS. Biochem Biophys Res Commun; 1997 Jun 09; 235(1):54-8. PubMed ID: 9196034 [Abstract] [Full Text] [Related]
14. Potentially deadly carcinogenic chromium redox cycle involving peroxochromium(IV) and glutathione. Marin R, Ahuja Y, Bose RN. J Am Chem Soc; 2010 Aug 11; 132(31):10617-9. PubMed ID: 20681676 [Abstract] [Full Text] [Related]
15. Mechanisms of DNA damage and insight into mutations by chromium(VI) in the presence of glutathione. Mazzer PA, Maurmann L, Bose RN. J Inorg Biochem; 2007 Jan 11; 101(1):44-55. PubMed ID: 17011629 [Abstract] [Full Text] [Related]
16. Chromium (IV)-mediated fenton-like reaction causes DNA damage: implication to genotoxicity of chromate. Luo H, Lu Y, Shi X, Mao Y, Dalal NS. Ann Clin Lab Sci; 1996 Jan 11; 26(2):185-91. PubMed ID: 8852428 [Abstract] [Full Text] [Related]
17. Genotoxicity and mutagenicity of chromium(VI)/ascorbate-generated DNA adducts in human and bacterial cells. Quievryn G, Peterson E, Messer J, Zhitkovich A. Biochemistry; 2003 Feb 04; 42(4):1062-70. PubMed ID: 12549927 [Abstract] [Full Text] [Related]
18. One-electron reduction of chromium(VI) by alpha-lipoic acid and related hydroxyl radical generation, dG hydroxylation and nuclear transcription factor-kappaB activation. Chen F, Ye J, Zhang X, Rojanasakul Y, Shi X. Arch Biochem Biophys; 1997 Feb 15; 338(2):165-72. PubMed ID: 9028868 [Abstract] [Full Text] [Related]
19. [Molecular effects of chromium compound activity]. Woźniak K. Postepy Hig Med Dosw; 1996 Feb 15; 50(4):383-94. PubMed ID: 9019747 [Abstract] [Full Text] [Related]
20. Effects of mannitol or catalase on the generation of reactive oxygen species leading to DNA damage by Chromium(VI) reduction with ascorbate. Tsou TC, Lai HJ, Yang JL. Chem Res Toxicol; 1999 Oct 15; 12(10):1002-9. PubMed ID: 10525278 [Abstract] [Full Text] [Related] Page: [Next] [New Search]