These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


258 related items for PubMed ID: 8860968

  • 61.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 62. Nitric oxide prevents IL-1beta and IFN-gamma-inducing factor (IL-18) release from macrophages by inhibiting caspase-1 (IL-1beta-converting enzyme).
    Kim YM, Talanian RV, Li J, Billiar TR.
    J Immunol; 1998 Oct 15; 161(8):4122-8. PubMed ID: 9780184
    [Abstract] [Full Text] [Related]

  • 63. CancerB increases production of nitric oxide and tumor necrosis factor-alpha in peritoneal macrophages.
    Jeong HJ, Chung HS, Hong SH, Na HJ, Koo HY, Seo SB, Kim KS, Song YS, Kim HM.
    Clin Chim Acta; 2002 Aug 15; 322(1-2):149-56. PubMed ID: 12104094
    [Abstract] [Full Text] [Related]

  • 64.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 65.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 66. Taurine chloramine inhibits NO and TNF-α production in zymosan plus interferon-γ activated RAW 264.7 cells.
    Kim BS, Cho IS, Park SY, Schuller-Levis G, Levis W, Park E.
    J Drugs Dermatol; 2011 Jun 15; 10(6):659-65. PubMed ID: 21637907
    [Abstract] [Full Text] [Related]

  • 67. A pathway through interferon-gamma is the main pathway for induction of nitric oxide upon stimulation with bacterial lipopolysaccharide in mouse peritoneal cells.
    Matsuura M, Saito S, Hirai Y, Okamura H.
    Eur J Biochem; 2003 Oct 15; 270(19):4016-25. PubMed ID: 14511384
    [Abstract] [Full Text] [Related]

  • 68.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 69. Macrophage-induced inhibition of nitric oxide production in primary rat hepatocyte cultures via prostaglandin E2 release.
    Griffon B, Cillard J, Chevanne M, Morel I, Cillard P, Sergent O.
    Hepatology; 1998 Nov 15; 28(5):1300-8. PubMed ID: 9794915
    [Abstract] [Full Text] [Related]

  • 70. Induction of macrophage lysosomal hydrolase synthesis and secretion by beta-1,3-glucan.
    Lew DB, Leslie CC, Riches DW, Henson PM.
    Cell Immunol; 1986 Jul 15; 100(2):340-50. PubMed ID: 2944604
    [Abstract] [Full Text] [Related]

  • 71. The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells.
    Xia Y, Vetvicka V, Yan J, Hanikýrová M, Mayadas T, Ross GD.
    J Immunol; 1999 Feb 15; 162(4):2281-90. PubMed ID: 9973505
    [Abstract] [Full Text] [Related]

  • 72. Suppression of IFN-gamma production from Listeria monocytogenes-specific T cells by endogenously produced nitric oxide.
    Xiong H, Kawamura I, Nishibori T, Mitsuyama M.
    Cell Immunol; 1996 Aug 25; 172(1):118-25. PubMed ID: 8806814
    [Abstract] [Full Text] [Related]

  • 73. Macrophage-derived nitric oxide inhibits the proliferation of activated T helper cells and is induced during antigenic stimulation of resting T cells.
    van der Veen RC, Dietlin TA, Dixon Gray J, Gilmore W.
    Cell Immunol; 2000 Jan 10; 199(1):43-9. PubMed ID: 10675274
    [Abstract] [Full Text] [Related]

  • 74. Tissue distribution of intraperitoneally administered (1-->3)-beta-D-glucan (SSG), a highly branched antitumor glucan, in mice.
    Suda M, Ohno N, Adachi Y, Yadomae T.
    J Pharmacobiodyn; 1992 Aug 10; 15(8):417-26. PubMed ID: 1479542
    [Abstract] [Full Text] [Related]

  • 75. Effect of partially modified retro-inverso analogues derived from C-reactive protein on the induction of nitric oxide synthesis in peritoneal macrophages.
    Arcoleo F, Milano S, D'Agostino P, Misiano G, Cappelletti S, Gromo G, Marcucci F, Leoni F, Cillari E.
    Br J Pharmacol; 1997 Apr 10; 120(7):1383-9. PubMed ID: 9105716
    [Abstract] [Full Text] [Related]

  • 76. Mobilization of peripheral blood progenitor cells by Betafectin PGG-Glucan alone and in combination with granulocyte colony-stimulating factor.
    Patchen ML, Liang J, Vaudrain T, Martin T, Melican D, Zhong S, Stewart M, Quesenberry PJ.
    Stem Cells; 1998 Apr 10; 16(3):208-17. PubMed ID: 9617896
    [Abstract] [Full Text] [Related]

  • 77. Expression of interleukin 1 family mRNAs by a highly branched (1-->3)-beta-D-glucan, OL-2.
    Nemoto J, Ohno N, Saito K, Adachi Y, Yadomae T.
    Biol Pharm Bull; 1993 Oct 10; 16(10):1046-50. PubMed ID: 8287038
    [Abstract] [Full Text] [Related]

  • 78. Involvement of NO, H2O2 and TNF-alpha in the reduced antitumor activity of murine peritoneal macrophages by aflatoxin B1.
    Moon EY, Rhee DK, Pyo S.
    Cancer Lett; 1999 Mar 01; 136(2):167-76. PubMed ID: 10355746
    [Abstract] [Full Text] [Related]

  • 79. Comparative effects of particulate and soluble glucan on macrophages of C3H/HeN and C3H/HeJ mice.
    Gallin EK, Green SW, Patchen ML.
    Int J Immunopharmacol; 1992 Feb 01; 14(2):173-83. PubMed ID: 1320591
    [Abstract] [Full Text] [Related]

  • 80. Enhancement of macrophage cytotoxicity against murine gliomas by interferon beta: increase in nitric oxide production in response to glioma-derived soluble factors.
    Kito T, Kuroda E, Yokota A, Yamashita U.
    J Neurosurg; 2002 Sep 01; 97(3):619-26. PubMed ID: 12296647
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.