These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
256 related items for PubMed ID: 8873118
1. The role of the basolateral nucleus of the amygdala in the pathway between the amygdala and the midbrain periaqueductal gray in the rat. Da Costa Gomez TM, Chandler SD, Behbehani MM. Neurosci Lett; 1996 Aug 16; 214(1):5-8. PubMed ID: 8873118 [Abstract] [Full Text] [Related]
2. An electrophysiological characterization of the projection from the central nucleus of the amygdala to the periaqueductal gray of the rat: the role of opioid receptors. da Costa Gomez TM, Behbehani MM. Brain Res; 1995 Aug 14; 689(1):21-31. PubMed ID: 8528703 [Abstract] [Full Text] [Related]
3. Periaqueductal gray matter projection to the parabrachial nucleus in rat. Krout KE, Jansen AS, Loewy AD. J Comp Neurol; 1998 Nov 30; 401(4):437-54. PubMed ID: 9826272 [Abstract] [Full Text] [Related]
4. Lesions of the periaqueductal gray disrupt input to the rostral ventromedial medulla following microinjections of morphine into the medial or basolateral nuclei of the amygdala. McGaraughty S, Farr DA, Heinricher MM. Brain Res; 2004 May 29; 1009(1-2):223-7. PubMed ID: 15120601 [Abstract] [Full Text] [Related]
5. Effect of the {mu} opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala. Finnegan TF, Chen SR, Pan HL. J Pharmacol Exp Ther; 2005 Feb 29; 312(2):441-8. PubMed ID: 15388784 [Abstract] [Full Text] [Related]
6. Fos expression induced by changes in arterial pressure is localized in distinct, longitudinally organized columns of neurons in the rat midbrain periaqueductal gray. Murphy AZ, Ennis M, Rizvi TA, Behbehani MM, Shipley MT. J Comp Neurol; 1995 Sep 18; 360(2):286-300. PubMed ID: 8522648 [Abstract] [Full Text] [Related]
7. Physiological characteristics of the projection pathway from the medial preoptic to the nucleus raphe magnus of the rat and its modulation by the periaqueductal gray. Jiang M, Behbehani MM. Pain; 2001 Nov 18; 94(2):139-147. PubMed ID: 11690727 [Abstract] [Full Text] [Related]
8. Conditioned and unconditioned fear organized in the periaqueductal gray are differentially sensitive to injections of muscimol into amygdaloid nuclei. Martinez RC, de Oliveira AR, Brandão ML. Neurobiol Learn Mem; 2006 Jan 18; 85(1):58-65. PubMed ID: 16198609 [Abstract] [Full Text] [Related]
9. Conditioned place aversion organized in the dorsal periaqueductal gray recruits the laterodorsal nucleus of the thalamus and the basolateral amygdala. Zanoveli JM, Ferreira-Netto C, Brandão ML. Exp Neurol; 2007 Nov 18; 208(1):127-36. PubMed ID: 17900567 [Abstract] [Full Text] [Related]
10. Opposing influence of basolateral amygdala and footshock stimulation on neurons of the central amygdala. Rosenkranz JA, Buffalari DM, Grace AA. Biol Psychiatry; 2006 May 01; 59(9):801-11. PubMed ID: 16373067 [Abstract] [Full Text] [Related]
11. Micturition-related neuronal firing in the periaqueductal gray area in cats. Liu Z, Sakakibara R, Nakazawa K, Uchiyama T, Yamamoto T, Ito T, Hattori T. Neuroscience; 2004 May 01; 126(4):1075-82. PubMed ID: 15207340 [Abstract] [Full Text] [Related]
12. The dorsal periaqueductal and basolateral amygdala are necessary for the expression of conditioned place avoidance induced by semicarbazide stimulation of the dorsal periaqueductal region. Zanoveli JM, Brandão ML. Prog Neuropsychopharmacol Biol Psychiatry; 2008 Oct 01; 32(7):1715-21. PubMed ID: 18687375 [Abstract] [Full Text] [Related]
13. Properties of a projection pathway from the medial preoptic nucleus to the midbrain periaqueductal gray of the rat and its role in the regulation of cardiovascular function. Behbehani MM, Da Costa Gomez TM. Brain Res; 1996 Nov 18; 740(1-2):141-50. PubMed ID: 8973808 [Abstract] [Full Text] [Related]
14. Neurohistological and behavioral evidence for lordosis-inhibiting tract from lateral septum to periaqueductal gray in male rats. Tsukahara S, Yamanouchi K. J Comp Neurol; 2001 Mar 12; 431(3):293-310. PubMed ID: 11170006 [Abstract] [Full Text] [Related]
15. Effects of electrical and chemical stimulation of the amygdala on the spontaneous discharge in the insular cortex in rats. Hanamori T. Brain Res; 2009 Jun 18; 1276():91-102. PubMed ID: 19389389 [Abstract] [Full Text] [Related]
16. Locus coeruleus activation by foot shock or electrical stimulation inhibits amygdala neurons. Chen FJ, Sara SJ. Neuroscience; 2007 Jan 19; 144(2):472-81. PubMed ID: 17097235 [Abstract] [Full Text] [Related]
17. Chemical stimulation of visceral afferents activates medullary neurones projecting to the central amygdala and periaqueductal grey. Viltart O, Sartor DM, Verberne AJ. Brain Res Bull; 2006 Dec 11; 71(1-3):51-9. PubMed ID: 17113928 [Abstract] [Full Text] [Related]
18. Organization of single components of defensive behaviors within distinct columns of periaqueductal gray matter of the rat: role of N-methyl-D-aspartic acid glutamate receptors. Bittencourt AS, Carobrez AP, Zamprogno LP, Tufik S, Schenberg LC. Neuroscience; 2004 Dec 11; 125(1):71-89. PubMed ID: 15051147 [Abstract] [Full Text] [Related]
20. [The effects of stimulation of nucleus raphe obscurus on Fos-expression evoked by activiting dorsal periaqueductal gray and unit discharge in ventral periaqueductal gray in rat]. Huang JH, Li P, Gong QL. Sheng Li Xue Bao; 1996 Apr 11; 48(2):149-56. PubMed ID: 9389166 [Abstract] [Full Text] [Related] Page: [Next] [New Search]