These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


136 related items for PubMed ID: 8878072

  • 1. Further evidence for the subsensitivity of striatal AMPA receptors, induced by chronic haloperidol administration: an autoradiographic study.
    Ossowska K, Pietraszek M, Wardas J.
    Naunyn Schmiedebergs Arch Pharmacol; 1996; 354(3):384-8. PubMed ID: 8878072
    [Abstract] [Full Text] [Related]

  • 2. Age-related changes in glutamate receptors: an autoradiographic analysis.
    Wardas J, Pietraszek M, Schulze G, Ossowska K, Wolfarth S.
    Pol J Pharmacol; 1997; 49(6):401-10. PubMed ID: 9566043
    [Abstract] [Full Text] [Related]

  • 3. Chronic haloperidol and clozapine administration increases the number of cortical NMDA receptors in rats.
    Ossowska K, Pietraszek M, Wardas J, Nowak G, Wolfarth S.
    Naunyn Schmiedebergs Arch Pharmacol; 1999 Apr; 359(4):280-7. PubMed ID: 10344526
    [Abstract] [Full Text] [Related]

  • 4. The subsensitivity of striatal glutamate receptors induced by chronic haloperidol in rats.
    Ossowska K.
    Eur J Pharmacol; 1995 Dec 29; 294(2-3):685-91. PubMed ID: 8750734
    [Abstract] [Full Text] [Related]

  • 5. Subchronic administration of clozapine, but not haloperidol or metoclopramide, decreases dopamine D2 receptor messenger RNA levels in the nucleus accumbens and caudate-putamen in rats.
    See RE, Lynch AM, Sorg BA.
    Neuroscience; 1996 May 29; 72(1):99-104. PubMed ID: 8730709
    [Abstract] [Full Text] [Related]

  • 6. Role of AMPA and NMDA receptors in the nucleus accumbens shell in turning behaviour of rats: interaction with dopamine receptors.
    Ikeda H, Akiyama G, Fujii Y, Minowa R, Koshikawa N, Cools AR.
    Neuropharmacology; 2003 Jan 29; 44(1):81-7. PubMed ID: 12559124
    [Abstract] [Full Text] [Related]

  • 7. Glutamate receptors in the postmortem striatum of schizophrenic, suicide, and control brains.
    Noga JT, Hyde TM, Herman MM, Spurney CF, Bigelow LB, Weinberger DR, Kleinman JE.
    Synapse; 1997 Nov 29; 27(3):168-76. PubMed ID: 9329152
    [Abstract] [Full Text] [Related]

  • 8. Effects of acute and chronic treatments with clozapine and haloperidol on serotonin (5-HT2) and dopamine (D2) receptors in the rat brain.
    Wilmot CA, Szczepanik AM.
    Brain Res; 1989 May 22; 487(2):288-98. PubMed ID: 2525063
    [Abstract] [Full Text] [Related]

  • 9. Role of NR2B-containing N-methyl-D-aspartate receptors in haloperidol-induced c-Fos expression in the striatum and nucleus accumbens.
    Lee J, Rajakumar N.
    Neuroscience; 2003 May 22; 122(3):739-45. PubMed ID: 14622917
    [Abstract] [Full Text] [Related]

  • 10. Mechanisms for metoclopramide-mediated sensitization and haloperidol-induced catalepsy in rats.
    Agovic MS, Yablonsky-Alter E, Lidsky TI, Banerjee SP.
    Eur J Pharmacol; 2008 Jun 10; 587(1-3):181-6. PubMed ID: 18457824
    [Abstract] [Full Text] [Related]

  • 11. Asenapine exerts distinctive regional effects on ionotropic glutamate receptor subtypes in rat brain.
    Tarazi FI, Choi YK, Gardner M, Wong EH, Henry B, Shahid M.
    Synapse; 2009 May 10; 63(5):413-20. PubMed ID: 19177511
    [Abstract] [Full Text] [Related]

  • 12. Crucial role of kainate receptors in mediating striatal kainate injection-induced decrease in acetylcholine M(1) receptor binding in rat forebrain.
    Jin S, Yang J, Lee WL, Wong PT.
    Brain Res; 2000 Nov 03; 882(1-2):128-38. PubMed ID: 11056192
    [Abstract] [Full Text] [Related]

  • 13. Differential regulation of dopamine receptors after chronic typical and atypical antipsychotic drug treatment.
    Tarazi FI, Florijn WJ, Creese I.
    Neuroscience; 1997 Jun 03; 78(4):985-96. PubMed ID: 9174067
    [Abstract] [Full Text] [Related]

  • 14. Dopamine D2-like antagonists induce chromatin remodeling in striatal neurons through cyclic AMP-protein kinase A and NMDA receptor signaling.
    Li J, Guo Y, Schroeder FA, Youngs RM, Schmidt TW, Ferris C, Konradi C, Akbarian S.
    J Neurochem; 2004 Sep 03; 90(5):1117-31. PubMed ID: 15312167
    [Abstract] [Full Text] [Related]

  • 15. The role of striatal glutamatergic system in haloperidol-induced dopamine receptor supersensitivity and effects of monosialoganglioside GM1.
    Schroeder H, Schroeder U, Sabel BA.
    Pharmacol Biochem Behav; 1997 Dec 03; 58(4):903-7. PubMed ID: 9408194
    [Abstract] [Full Text] [Related]

  • 16. Localization of ionotropic glutamate receptors in caudate-putamen and nucleus accumbens septi of rat brain: comparison of NMDA, AMPA, and kainate receptors.
    Tarazi FI, Campbell A, Yeghiayan SK, Baldessarini RJ.
    Synapse; 1998 Oct 03; 30(2):227-35. PubMed ID: 9723793
    [Abstract] [Full Text] [Related]

  • 17. Dopamine inhibits [3H]MK-801 binding in membrane preparations from rat cerebral cortex and caudate-putamen.
    von Euler G, Liu Y.
    Acta Physiol Scand; 1992 Dec 03; 146(4):547-8. PubMed ID: 1492575
    [No Abstract] [Full Text] [Related]

  • 18. Interaction between dopamine and glutamate receptors following treatment with NMDA receptor antagonists.
    Vasiliadis HM, Elie R, Dewar KM.
    Eur J Pharmacol; 1999 Dec 15; 386(2-3):155-63. PubMed ID: 10618465
    [Abstract] [Full Text] [Related]

  • 19. The role of NMDA and AMPA/Kainate receptors in the consolidation of catalepsy sensitization.
    Riedinger K, Kulak A, Schmidt WJ, von Ameln-Mayerhofer A.
    Behav Brain Res; 2011 Mar 17; 218(1):194-9. PubMed ID: 21130808
    [Abstract] [Full Text] [Related]

  • 20. Novel class of amino acid antagonists at non-N-methyl-D-aspartic acid excitatory amino acid receptors. Synthesis, in vitro and in vivo pharmacology, and neuroprotection.
    Krogsgaard-Larsen P, Ferkany JW, Nielsen EO, Madsen U, Ebert B, Johansen JS, Diemer NH, Bruhn T, Beattie DT, Curtis DR.
    J Med Chem; 1991 Jan 17; 34(1):123-30. PubMed ID: 1825114
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.