These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


204 related items for PubMed ID: 8880298

  • 1. Predictive model of the effect of temperature, pH and sodium chloride on growth from spores of non-proteolytic Clostridium botulinum.
    Graham AF, Mason DR, Peck MW.
    Int J Food Microbiol; 1996 Aug; 31(1-3):69-85. PubMed ID: 8880298
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Minimal growth temperature, sodium chloride tolerance, pH sensitivity, and toxin production of marine and terrestrial strains of Clostridium botulinum type C.
    Segner WP, Schmidt CF, Boltz JK.
    Appl Microbiol; 1971 Dec; 22(6):1025-9. PubMed ID: 4944801
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Time-to-detection, percent-growth-positive and maximum growth rate models for Clostridium botulinum 56A at multiple temperatures.
    Zhao L, Montville TJ, Schaffner DW.
    Int J Food Microbiol; 2002 Aug 25; 77(3):187-97. PubMed ID: 12160078
    [Abstract] [Full Text] [Related]

  • 11. Effect of acid and salt concentration in fresh-pack pickles on the growth of Clostridium botulinum spores.
    Ito KA, Chen JK, Lerke PA, Seeger ML, Unverferth JA.
    Appl Environ Microbiol; 1976 Jul 25; 32(1):121-4. PubMed ID: 9898
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. A predictive model that describes the effect of prolonged heating at 70 to 90 degrees C and subsequent incubation at refrigeration temperatures on growth from spores and toxigenesis by nonproteolytic Clostridium botulinum in the presence of lysozyme.
    Fernández PS, Peck MW.
    Appl Environ Microbiol; 1999 Aug 25; 65(8):3449-57. PubMed ID: 10427033
    [Abstract] [Full Text] [Related]

  • 16. Cardinal parameter growth and growth boundary model for non-proteolytic Clostridium botulinum - Effect of eight environmental factors.
    Koukou I, Mejlholm O, Dalgaard P.
    Int J Food Microbiol; 2021 May 16; 346():109162. PubMed ID: 33827003
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Control of nonproteolytic Clostridium botulinum types B and E in crab analogs by combinations of heat pasteurization and water phase salt.
    Peterson ME, Paranjpye RN, Poysky FT, Pelroy GA, Eklund MW.
    J Food Prot; 2002 Jan 16; 65(1):130-9. PubMed ID: 11808784
    [Abstract] [Full Text] [Related]

  • 20. Inhibition of Clostridium botulinum in Model Reduced-Sodium Pasteurized Prepared Cheese Products.
    Glass KA, Mu M, LeVine B, Rossi F.
    J Food Prot; 2017 Sep 16; 80(9):1478-1488. PubMed ID: 28786718
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.