These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
278 related items for PubMed ID: 8880931
1. A comparative study of dynamic structures between phage 434 Cro and repressor proteins by normal mode analysis. Wako H, Tachikawa M, Ogawa A. Proteins; 1996 Sep; 26(1):72-80. PubMed ID: 8880931 [Abstract] [Full Text] [Related]
2. The structural basis for enhanced stability and reduced DNA binding seen in engineered second-generation Cro monomers and dimers. Rupert PB, Mollah AK, Mossing MC, Matthews BW. J Mol Biol; 2000 Mar 03; 296(4):1079-90. PubMed ID: 10686105 [Abstract] [Full Text] [Related]
3. Two structures of a lambda Cro variant highlight dimer flexibility but disfavor major dimer distortions upon specific binding of cognate DNA. Hall BM, Roberts SA, Heroux A, Cordes MH. J Mol Biol; 2008 Jan 18; 375(3):802-11. PubMed ID: 18054042 [Abstract] [Full Text] [Related]
4. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation. Backes H, Berens C, Helbl V, Walter S, Schmid FX, Hillen W. Biochemistry; 1997 May 06; 36(18):5311-22. PubMed ID: 9154913 [Abstract] [Full Text] [Related]
5. [Synthesis of nonlinear DNA-binding peptide with binding specificity determinants close to those of 434 Cro-repressor]. Grokhovskiĭ SL, Surovaia AN, Sidorova NIu, Gurskiĭ GV. Mol Biol (Mosk); 1989 May 06; 23(6):1558-80. PubMed ID: 2633035 [Abstract] [Full Text] [Related]
6. Repertoire selection of variant single-chain Cro: toward directed DNA-binding specificity of helix-turn-helix proteins. Nilsson MT, Widersten M. Biochemistry; 2004 Sep 28; 43(38):12038-47. PubMed ID: 15379544 [Abstract] [Full Text] [Related]
7. Crystal structure of lambda-Cro bound to a consensus operator at 3.0 A resolution. Albright RA, Matthews BW. J Mol Biol; 1998 Jul 03; 280(1):137-51. PubMed ID: 9653037 [Abstract] [Full Text] [Related]
8. Functional roles of amino acid residues involved in forming the alpha-helix-turn-alpha-helix operator DNA binding motif of Tet repressor from Tn10. Baumeister R, Müller G, Hecht B, Hillen W. Proteins; 1992 Oct 03; 14(2):168-77. PubMed ID: 1409566 [Abstract] [Full Text] [Related]
9. Determination of the nuclear magnetic resonance structure of the DNA-binding domain of the P22 c2 repressor (1 to 76) in solution and comparison with the DNA-binding domain of the 434 repressor. Sevilla-Sierra P, Otting G, Wüthrich K. J Mol Biol; 1994 Jan 21; 235(3):1003-20. PubMed ID: 8289306 [Abstract] [Full Text] [Related]
10. Sequence correlations between Cro recognition helices and cognate O(R) consensus half-sites suggest conserved rules of protein-DNA recognition. Hall BM, Lefevre KR, Cordes MH. J Mol Biol; 2005 Jul 22; 350(4):667-81. PubMed ID: 15967464 [Abstract] [Full Text] [Related]
11. Coupled energetics of lambda cro repressor self-assembly and site-specific DNA operator binding II: cooperative interactions of cro dimers. Darling PJ, Holt JM, Ackers GK. J Mol Biol; 2000 Sep 22; 302(3):625-38. PubMed ID: 10986123 [Abstract] [Full Text] [Related]
12. An aromatic stacking interaction between subunits helps mediate DNA sequence specificity: operator site discrimination by phage lambda cI repressor. Huang YT, Rusinova E, Ross JB, Senear DF. J Mol Biol; 1997 Mar 28; 267(2):403-17. PubMed ID: 9096234 [Abstract] [Full Text] [Related]
13. Refined structure of Cro repressor protein from bacteriophage lambda suggests both flexibility and plasticity. Ohlendorf DH, Tronrud DE, Matthews BW. J Mol Biol; 1998 Jul 03; 280(1):129-36. PubMed ID: 9653036 [Abstract] [Full Text] [Related]
14. Structural comparison of the PhoB and OmpR DNA-binding/transactivation domains and the arrangement of PhoB molecules on the phosphate box. Okamura H, Hanaoka S, Nagadoi A, Makino K, Nishimura Y. J Mol Biol; 2000 Feb 04; 295(5):1225-36. PubMed ID: 10653699 [Abstract] [Full Text] [Related]
15. Structural role of a buried salt bridge in the 434 repressor DNA-binding domain. Pervushin K, Billeter M, Siegal G, Wüthrich K. J Mol Biol; 1996 Dec 20; 264(5):1002-12. PubMed ID: 9000626 [Abstract] [Full Text] [Related]
17. Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. Wintjens R, Rooman M. J Mol Biol; 1996 Sep 20; 262(2):294-313. PubMed ID: 8831795 [Abstract] [Full Text] [Related]
18. Crystal structure of an engineered Cro monomer bound nonspecifically to DNA: possible implications for nonspecific binding by the wild-type protein. Albright RA, Mossing MC, Matthews BW. Protein Sci; 1998 Jul 20; 7(7):1485-94. PubMed ID: 9684880 [Abstract] [Full Text] [Related]
19. Crystal structure of the lambda repressor C-terminal domain octamer. Bell CE, Lewis M. J Mol Biol; 2001 Dec 14; 314(5):1127-36. PubMed ID: 11743728 [Abstract] [Full Text] [Related]
20. Incorporation of anthraquinonyl group into lambda-Cro repressor protein for strand- and position-specific photocleavage of double-stranded DNA. Sasaki H, Ikeda K, Suzuki M, Ninomiya K, Sisido M. Biopolymers; 2004 Dec 14; 76(1):21-6. PubMed ID: 14997471 [Abstract] [Full Text] [Related] Page: [Next] [New Search]