These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Formation of active monomers from tetrameric human beta-tryptase. Fajardo I, Pejler G. Biochem J; 2003 Feb 01; 369(Pt 3):603-10. PubMed ID: 12387726 [Abstract] [Full Text] [Related]
4. Human beta-tryptase: detection and characterization of the active monomer and prevention of tetramer reconstitution by protease inhibitors. Fukuoka Y, Schwartz LB. Biochemistry; 2004 Aug 24; 43(33):10757-64. PubMed ID: 15311937 [Abstract] [Full Text] [Related]
5. Immunologic and physicochemical evidence for conformational changes occurring on conversion of human mast cell tryptase from active tetramer to inactive monomer. Production of monoclonal antibodies recognizing active tryptase. Schwartz LB, Bradford TR, Lee DC, Chlebowski JF. J Immunol; 1990 Mar 15; 144(6):2304-11. PubMed ID: 2179409 [Abstract] [Full Text] [Related]
6. Recombinant human mast cell tryptase beta: stable expression in Pichia pastoris and purification of fully active enzyme. Niles AL, Maffitt M, Haak-Frendscho M, Wheeless CJ, Johnson DA. Biotechnol Appl Biochem; 1998 Oct 15; 28 ( Pt 2)():125-31. PubMed ID: 9756742 [Abstract] [Full Text] [Related]
8. Spontaneous inactivation of human tryptase involves conformational changes consistent with conversion of the active site to a zymogen-like structure. Selwood T, McCaslin DR, Schechter NM. Biochemistry; 1998 Sep 22; 37(38):13174-83. PubMed ID: 9748324 [Abstract] [Full Text] [Related]
10. Spontaneous inactivation of human lung tryptase as probed by size-exclusion chromatography and chemical cross-linking: dissociation of active tetrameric enzyme into inactive monomers is the primary event of the entire process. Kozik A, Potempa J, Travis J. Biochim Biophys Acta; 1998 Jun 11; 1385(1):139-48. PubMed ID: 9630576 [Abstract] [Full Text] [Related]
11. Structural requirements and mechanism for heparin-dependent activation and tetramerization of human betaI- and betaII-tryptase. Hallgren J, Lindahl S, Pejler G. J Mol Biol; 2005 Jan 07; 345(1):129-39. PubMed ID: 15567416 [Abstract] [Full Text] [Related]
12. Structural requirements and mechanism for heparin-induced activation of a recombinant mouse mast cell tryptase, mouse mast cell protease-6: formation of active tryptase monomers in the presence of low molecular weight heparin. Hallgren J, Spillmann D, Pejler G. J Biol Chem; 2001 Nov 16; 276(46):42774-81. PubMed ID: 11533057 [Abstract] [Full Text] [Related]
13. Regulation of tryptase from human lung mast cells by heparin. Stabilization of the active tetramer. Schwartz LB, Bradford TR. J Biol Chem; 1986 Jun 05; 261(16):7372-9. PubMed ID: 3519608 [Abstract] [Full Text] [Related]
15. Characterization of three distinct catalytic forms of human tryptase-beta: their interrelationships and relevance. Schechter NM, Choi EJ, Selwood T, McCaslin DR. Biochemistry; 2007 Aug 21; 46(33):9615-29. PubMed ID: 17655281 [Abstract] [Full Text] [Related]
16. Neutrophil myeloperoxidase is a potent and selective inhibitor of mast cell tryptase. Cregar L, Elrod KC, Putnam D, Moore WR. Arch Biochem Biophys; 1999 Jun 01; 366(1):125-30. PubMed ID: 10334872 [Abstract] [Full Text] [Related]
17. Structural changes associated with the spontaneous inactivation of the serine proteinase human tryptase. Schechter NM, Eng GY, Selwood T, McCaslin DR. Biochemistry; 1995 Aug 22; 34(33):10628-38. PubMed ID: 7654717 [Abstract] [Full Text] [Related]
19. Inhibition of human mast cell chymase by secretory leukocyte proteinase inhibitor: enhancement of the interaction by heparin. Walter M, Plotnick M, Schechter NM. Arch Biochem Biophys; 1996 Mar 01; 327(1):81-8. PubMed ID: 8615699 [Abstract] [Full Text] [Related]
20. Expression and characterization of recombinant mast cell tryptase. Chan H, Elrod KC, Numerof RP, Sideris S, Clark JM. Protein Expr Purif; 1999 Apr 01; 15(3):251-7. PubMed ID: 10092484 [Abstract] [Full Text] [Related] Page: [Next] [New Search]