These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


172 related items for PubMed ID: 8887768

  • 21. Lactate elimination and glycogen resynthesis after intense bicycling.
    Medbø JI, Jebens E, Noddeland H, Hanem S, Toska K.
    Scand J Clin Lab Invest; 2006; 66(3):211-26. PubMed ID: 16714250
    [Abstract] [Full Text] [Related]

  • 22. Hyperoxia decreases muscle glycogenolysis, lactate production, and lactate efflux during steady-state exercise.
    Stellingwerff T, Leblanc PJ, Hollidge MG, Heigenhauser GJ, Spriet LL.
    Am J Physiol Endocrinol Metab; 2006 Jun; 290(6):E1180-90. PubMed ID: 16403777
    [Abstract] [Full Text] [Related]

  • 23. Erythropoietin does not reduce plasma lactate, H⁺, and K⁺ during intense exercise.
    Nordsborg NB, Robach P, Boushel R, Calbet JA, Lundby C.
    Scand J Med Sci Sports; 2015 Dec; 25(6):e566-75. PubMed ID: 25556620
    [Abstract] [Full Text] [Related]

  • 24. Substrates for muscle glycogen synthesis in recovery from intense exercise in man.
    Bangsbo J, Gollnick PD, Graham TE, Saltin B.
    J Physiol; 1991 Mar; 434():423-40. PubMed ID: 1902517
    [Abstract] [Full Text] [Related]

  • 25. Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development.
    Mohr M, Krustrup P, Nielsen JJ, Nybo L, Rasmussen MK, Juel C, Bangsbo J.
    Am J Physiol Regul Integr Comp Physiol; 2007 Apr; 292(4):R1594-602. PubMed ID: 17194727
    [Abstract] [Full Text] [Related]

  • 26. Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise.
    Hollidge-Horvat MG, Parolin ML, Wong D, Jones NL, Heigenhauser GJ.
    Am J Physiol Endocrinol Metab; 2000 Feb; 278(2):E316-29. PubMed ID: 10662717
    [Abstract] [Full Text] [Related]

  • 27. Exercise and recovery metabolism in the Pacific spiny dogfish (Squalus acanthias).
    Richards JG, Heigenhauser GJ, Wood CM.
    J Comp Physiol B; 2003 Aug; 173(6):463-74. PubMed ID: 12851779
    [Abstract] [Full Text] [Related]

  • 28. Leg and arm lactate and substrate kinetics during exercise.
    Van Hall G, Jensen-Urstad M, Rosdahl H, Holmberg HC, Saltin B, Calbet JA.
    Am J Physiol Endocrinol Metab; 2003 Jan; 284(1):E193-205. PubMed ID: 12388120
    [Abstract] [Full Text] [Related]

  • 29. Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men.
    McKenna MJ, Heigenhauser GJ, McKelvie RS, Obminski G, MacDougall JD, Jones NL.
    J Physiol; 1997 Jun 15; 501 ( Pt 3)(Pt 3):703-16. PubMed ID: 9218229
    [Abstract] [Full Text] [Related]

  • 30. Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men.
    Tsintzas OK, Williams C, Boobis L, Greenhaff P.
    J Appl Physiol (1985); 1996 Aug 15; 81(2):801-9. PubMed ID: 8872649
    [Abstract] [Full Text] [Related]

  • 31. Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise.
    Juel C, Bangsbo J, Graham T, Saltin B.
    Acta Physiol Scand; 1990 Oct 15; 140(2):147-59. PubMed ID: 2125176
    [Abstract] [Full Text] [Related]

  • 32. Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation.
    Mohr M, Nielsen JJ, Bangsbo J.
    J Appl Physiol (1985); 2011 Nov 15; 111(5):1372-9. PubMed ID: 21836046
    [Abstract] [Full Text] [Related]

  • 33. Effect of muscle glycogen on glucose, lactate and amino acid metabolism during exercise and recovery in human subjects.
    Blomstrand E, Saltin B.
    J Physiol; 1999 Jan 01; 514 ( Pt 1)(Pt 1):293-302. PubMed ID: 9831734
    [Abstract] [Full Text] [Related]

  • 34. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle.
    Juel C, Klarskov C, Nielsen JJ, Krustrup P, Mohr M, Bangsbo J.
    Am J Physiol Endocrinol Metab; 2004 Feb 01; 286(2):E245-51. PubMed ID: 14559724
    [Abstract] [Full Text] [Related]

  • 35. Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans.
    Harmer AR, McKenna MJ, Sutton JR, Snow RJ, Ruell PA, Booth J, Thompson MW, Mackay NA, Stathis CG, Crameri RM, Carey MF, Eager DM.
    J Appl Physiol (1985); 2000 Nov 01; 89(5):1793-803. PubMed ID: 11053328
    [Abstract] [Full Text] [Related]

  • 36. Metabolic demands of intense aerobic interval training in competitive cyclists.
    Stepto NK, Martin DT, Fallon KE, Hawley JA.
    Med Sci Sports Exerc; 2001 Feb 01; 33(2):303-10. PubMed ID: 11224822
    [Abstract] [Full Text] [Related]

  • 37. Effect of expiratory muscle fatigue on exercise tolerance and locomotor muscle fatigue in healthy humans.
    Taylor BJ, Romer LM.
    J Appl Physiol (1985); 2008 May 01; 104(5):1442-51. PubMed ID: 18323465
    [Abstract] [Full Text] [Related]

  • 38. Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise.
    Parkin JM, Carey MF, Zhao S, Febbraio MA.
    J Appl Physiol (1985); 1999 Mar 01; 86(3):902-8. PubMed ID: 10066703
    [Abstract] [Full Text] [Related]

  • 39. Impact of Muscle Glycogen Availability on the Capacity for Repeated Exercise in Man.
    Alghannam AF, Jedrzejewski D, Tweddle MG, Gribble H, Bilzon J, Thompson D, Tsintzas K, Betts JA.
    Med Sci Sports Exerc; 2016 Jan 01; 48(1):123-31. PubMed ID: 26197030
    [Abstract] [Full Text] [Related]

  • 40. Tricarboxylic acid cycle intermediates accumulate at the onset of intense exercise in man but are not essential for the increase in muscle oxygen uptake.
    Bangsbo J, Gibala MJ, Howarth KR, Krustrup P.
    Pflugers Arch; 2006 Sep 01; 452(6):737-43. PubMed ID: 16721612
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.