These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
203 related items for PubMed ID: 8887914
1. Two-lasers assisted ablation: a method for enhancing conventional laser ablation of materials. Neev J, Lee JP. Lasers Surg Med; 1996; 19(2):130-4. PubMed ID: 8887914 [Abstract] [Full Text] [Related]
2. Effects of CO2 laser pulse duration in ablation and residual thermal damage: implications for skin resurfacing. Ross EV, Domankevitz Y, Skrobal M, Anderson RR. Lasers Surg Med; 1996; 19(2):123-9. PubMed ID: 8887913 [Abstract] [Full Text] [Related]
4. New semiconductor laser for vitreoretinal surgery. Azzolini C, Gobbi PG, Brancato R, Trabucchi G, Codenotti M. Lasers Surg Med; 1996; 19(2):177-83. PubMed ID: 8887921 [Abstract] [Full Text] [Related]
5. Pulsed laser ablation of soft tissues, gels, and aqueous solutions at temperatures below 100 degrees C. Oraevsky AA, Jacques SL, Esenaliev RO, Tittel FK. Lasers Surg Med; 1996; 18(3):231-40. PubMed ID: 8778517 [Abstract] [Full Text] [Related]
6. 13CO2 isotopic laser used through the operating channel of laser laparoscopes: a comparative study of power and energy density losses. Adamson GD, Reich H, Trost D. Obstet Gynecol; 1994 May; 83(5 Pt 1):717-24. PubMed ID: 8164930 [Abstract] [Full Text] [Related]
7. Investigations on laser hard tissue ablation under various environments. Kang HW, Oh J, Welch AJ. Phys Med Biol; 2008 Jun 21; 53(12):3381-90. PubMed ID: 18523347 [Abstract] [Full Text] [Related]
8. Reduction in lateral thermal damage using heat-conducting templates: a comparison of continuous wave and pulsed CO2 lasers. Spector N, Spector J, Ellis DL, Reinisch L. Lasers Surg Med; 2003 Jun 21; 32(2):94-100. PubMed ID: 12561041 [Abstract] [Full Text] [Related]
9. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a lambda = 9.3-microm TEA CO(2) laser. Fried D, Featherstone JD, Le CQ, Fan K. Lasers Surg Med; 2006 Oct 21; 38(9):837-45. PubMed ID: 17044095 [Abstract] [Full Text] [Related]
10. Comparison of Er:YAG and 9.6-microm TE CO(2) lasers for ablation of skull tissue. Fried NM, Fried D. Lasers Surg Med; 2001 Oct 21; 28(4):335-43. PubMed ID: 11344514 [Abstract] [Full Text] [Related]
17. Acute and chronic effects of transmyocardial laser revascularization in the nonischemic pig myocardium by using three laser systems. Genyk IA, Frenz M, Ott B, Walpoth BH, Schaffner T, Carrel TP. Lasers Surg Med; 2000 Dec 21; 27(5):438-50. PubMed ID: 11126438 [Abstract] [Full Text] [Related]
18. Occurrence and magnitude of pressure waves during Er:YAG laser ablation of atherosclerotic tissue: comparison to XeCl excimer laser ablation. Rose CH, Haase KK, Wehrmann M, Karsch KR. Lasers Surg Med; 1996 Dec 21; 19(3):273-83. PubMed ID: 8923423 [Abstract] [Full Text] [Related]
19. Laser physics and safety. Nolan LJ. Clin Podiatr Med Surg; 1987 Oct 21; 4(4):777-86. PubMed ID: 2960435 [Abstract] [Full Text] [Related]
20. Area ablation: a new lasing concept provides significantly enhanced acute and long-term results for treatment of in-stent restenosis. Dahm JB, Kuon E, Hummel A, Möx B, Staudt A, Felix SB. Lasers Surg Med; 2002 Oct 21; 31(1):1-8. PubMed ID: 12124708 [Abstract] [Full Text] [Related] Page: [Next] [New Search]