These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


851 related items for PubMed ID: 8889824

  • 1. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors.
    Yamashita A, Miyoshi H, Hatano T, Iwamura H.
    J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824
    [Abstract] [Full Text] [Related]

  • 2. Comparison of the structures of the quinone-binding sites in beef heart mitochondria.
    Tan AK, Ramsay RR, Singer TP, Miyoshi H.
    J Biol Chem; 1993 Sep 15; 268(26):19328-33. PubMed ID: 8396133
    [Abstract] [Full Text] [Related]

  • 3. Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c reductases.
    Gwak SH, Yu L, Yu CA.
    Biochemistry; 1986 Nov 18; 25(23):7675-82. PubMed ID: 3026458
    [Abstract] [Full Text] [Related]

  • 4. The effects of nitric oxide on electron transport complexes.
    Welter R, Yu L, Yu CA.
    Arch Biochem Biophys; 1996 Jul 01; 331(1):9-14. PubMed ID: 8660677
    [Abstract] [Full Text] [Related]

  • 5. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives.
    Gu LQ, Yu L, Yu CA.
    Biochim Biophys Acta; 1990 Feb 22; 1015(3):482-92. PubMed ID: 2154255
    [Abstract] [Full Text] [Related]

  • 6. Quantitative resolution of succinate-cytochrome c reductase into succinate-ubiquinone and ubiquinol-cytochrome c reductases.
    Yu L, Yu CA.
    J Biol Chem; 1982 Feb 25; 257(4):2016-21. PubMed ID: 6276404
    [Abstract] [Full Text] [Related]

  • 7. Direct interaction between yeast NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and ubiquinol-cytochrome c oxidoreductase in the reduction of exogenous quinones.
    Zhu QS, Beattie DS.
    J Biol Chem; 1988 Jan 05; 263(1):193-9. PubMed ID: 2826438
    [Abstract] [Full Text] [Related]

  • 8. Protein-ubiquinone interaction in bovine heart mitochondrial succinate-cytochrome c reductase. Synthesis and biological properties of fluorine substituted ubiquinone derivatives.
    Yang F, Yu L, He DY, Yu CA.
    J Biol Chem; 1991 Nov 05; 266(31):20863-9. PubMed ID: 1657937
    [Abstract] [Full Text] [Related]

  • 9. Inhibitor probes of the quinone binding sites of mammalian complex II and Escherichia coli fumarate reductase.
    Yankovskaya V, Sablin SO, Ramsay RR, Singer TP, Ackrell BA, Cecchini G, Miyoshi H.
    J Biol Chem; 1996 Aug 30; 271(35):21020-4. PubMed ID: 8702865
    [Abstract] [Full Text] [Related]

  • 10. Similarities between mitochondrial and bacterial electron transport with particular reference to the action of inhibitors.
    Ferguson SJ.
    Biochem Soc Trans; 1994 Feb 30; 22(1):181-3. PubMed ID: 8206221
    [No Abstract] [Full Text] [Related]

  • 11. Protein ubiquinone interaction. Synthesis and biological properties of 5-alkyl ubiquinone derivatives.
    He DY, Yu L, Yu CA.
    J Biol Chem; 1994 Nov 11; 269(45):27885-8. PubMed ID: 7961719
    [Abstract] [Full Text] [Related]

  • 12. Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase).
    Miyadera H, Shiomi K, Ui H, Yamaguchi Y, Masuma R, Tomoda H, Miyoshi H, Osanai A, Kita K, Omura S.
    Proc Natl Acad Sci U S A; 2003 Jan 21; 100(2):473-7. PubMed ID: 12515859
    [Abstract] [Full Text] [Related]

  • 13. Hybrid ubiquinone: novel inhibitor of mitochondrial complex I.
    Yabunaka H, Kenmochi A, Nakatogawa Y, Sakamoto K, Miyoshi H.
    Biochim Biophys Acta; 2002 Dec 02; 1556(2-3):106-12. PubMed ID: 12460667
    [Abstract] [Full Text] [Related]

  • 14. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether.
    Suzuki H, Wakai M, Ozawa T.
    Biochem Int; 1986 Aug 02; 13(2):351-7. PubMed ID: 3094534
    [Abstract] [Full Text] [Related]

  • 15. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles.
    Fato R, Estornell E, Di Bernardo S, Pallotti F, Parenti Castelli G, Lenaz G.
    Biochemistry; 1996 Feb 27; 35(8):2705-16. PubMed ID: 8611577
    [Abstract] [Full Text] [Related]

  • 16. Comparison of catalytic activity and inhibitors of quinone reactions of succinate dehydrogenase (Succinate-ubiquinone oxidoreductase) and fumarate reductase (Menaquinol-fumarate oxidoreductase) from Escherichia coli.
    Maklashina E, Cecchini G.
    Arch Biochem Biophys; 1999 Sep 15; 369(2):223-32. PubMed ID: 10486141
    [Abstract] [Full Text] [Related]

  • 17. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB, Vinogradov AD.
    Biochim Biophys Acta; 1990 Aug 30; 1019(2):151-8. PubMed ID: 2119805
    [Abstract] [Full Text] [Related]

  • 18. The interaction of arylazido ubiquinone derivative with mitochondrial ubiquinol-cytochrome c reductase.
    Yu L, Yu CA.
    J Biol Chem; 1982 Sep 10; 257(17):10215-21. PubMed ID: 6286644
    [No Abstract] [Full Text] [Related]

  • 19. The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain.
    Brasseur G, Tron G, Dujardin G, Slonimski PP, Brivet-Chevillotte P.
    Eur J Biochem; 1997 May 15; 246(1):103-11. PubMed ID: 9210471
    [Abstract] [Full Text] [Related]

  • 20. The inhibitory effect of extracts of cigarette tar on electron transport of mitochondria and submitochondrial particles.
    Pryor WA, Arbour NC, Upham B, Church DF.
    Free Radic Biol Med; 1992 May 15; 12(5):365-72. PubMed ID: 1317324
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 43.