These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


102 related items for PubMed ID: 8891352

  • 1. Isolation of a trifluoroleucine-resistant mutant of Saccharomyces cerevisiae deficient in both high- and low-affinity L-leucine transport.
    Chianelli MS, Stella CA, Sáenz DA, Ramos EH, Kotliar N, Mattoon JR.
    Cell Mol Biol (Noisy-le-grand); 1996 Sep; 42(6):847-57. PubMed ID: 8891352
    [Abstract] [Full Text] [Related]

  • 2. L-leucine transport systems in Saccharomyces cerevisiae participation of GAP1, S1 and S2 transport systems.
    Kotliar N, Stella CA, Ramos EH, Mattoon JR.
    Cell Mol Biol (Noisy-le-grand); 1994 Sep; 40(6):833-42. PubMed ID: 7812191
    [Abstract] [Full Text] [Related]

  • 3. [Effect of ammonium ions on the uptake of L-leucine in Saccharomyces cerevisiae. Repression and inhibition of transport systems].
    Kotliar N, Stella CA, Ramos EH.
    Rev Argent Microbiol; 1990 Sep; 22(1):7-16. PubMed ID: 2274663
    [Abstract] [Full Text] [Related]

  • 4. The Saccharomyces cerevisiae LEP1/SAC3 gene is associated with leucine transport.
    Stella CA, Korch C, Ramos EH, Bauer A, Kölling R, Mattoon JR.
    Mol Gen Genet; 1999 Sep; 262(2):332-41. PubMed ID: 10517330
    [Abstract] [Full Text] [Related]

  • 5. The branched-chain amino acid permease gene of Saccharomyces cerevisiae, BAP2, encodes the high-affinity leucine permease (S1).
    Schreve J, Garrett JM.
    Yeast; 1997 Apr; 13(5):435-9. PubMed ID: 9153753
    [Abstract] [Full Text] [Related]

  • 6. Amino acid residues important for substrate specificity of the amino acid permeases Can1p and Gnp1p in Saccharomyces cerevisiae.
    Regenberg B, Kielland-Brandt MC.
    Yeast; 2001 Nov; 18(15):1429-40. PubMed ID: 11746604
    [Abstract] [Full Text] [Related]

  • 7. RAS2/PKA pathway activity is involved in the nitrogen regulation of L-leucine uptake in Saccharomyces cerevisiae.
    Sáenz DA, Chianelli MS, Stella CA, Mattoon JR, Ramos EH.
    Int J Biochem Cell Biol; 1997 Mar; 29(3):505-12. PubMed ID: 9202429
    [Abstract] [Full Text] [Related]

  • 8. A high-affinity uptake system for branched-chain amino acids in Saccharomyces cerevisiae.
    Tullin S, Gjermansen C, Kielland-Brandt MC.
    Yeast; 1991 Dec; 7(9):933-41. PubMed ID: 1803818
    [Abstract] [Full Text] [Related]

  • 9. Mutations in five loci affecting GAP1-independent uptake of neutral amino acids in yeast.
    Jørgensen MU, Bruun MB, Didion T, Kielland-Brandt MC.
    Yeast; 1998 Jan 30; 14(2):103-14. PubMed ID: 9483800
    [Abstract] [Full Text] [Related]

  • 10. The role of GAP1 gene in the nitrogen metabolism of Saccharomyces cerevisiae during wine fermentation.
    Chiva R, Baiges I, Mas A, Guillamon JM.
    J Appl Microbiol; 2009 Jul 30; 107(1):235-44. PubMed ID: 19302302
    [Abstract] [Full Text] [Related]

  • 11. Identification of the gene at the pmg locus, encoding system II, the general amino acid transporter in Neurospora crassa.
    Margolis-Clark E, Hunt I, Espinosa S, Bowman BJ.
    Fungal Genet Biol; 2001 Jul 30; 33(2):127-35. PubMed ID: 11456465
    [Abstract] [Full Text] [Related]

  • 12. GAP1, a novel selection and counter-selection marker for multiple gene disruptions in Saccharomyces cerevisiae.
    Regenberg B, Hansen J.
    Yeast; 2000 Sep 15; 16(12):1111-9. PubMed ID: 10953083
    [Abstract] [Full Text] [Related]

  • 13. Amino acids induce expression of BAP2, a branched-chain amino acid permease gene in Saccharomyces cerevisiae.
    Didion T, Grauslund M, Kielland-Brandt MC, Andersen HA.
    J Bacteriol; 1996 Apr 15; 178(7):2025-9. PubMed ID: 8606179
    [Abstract] [Full Text] [Related]

  • 14. The study of methionine uptake in Saccharomyces cerevisiae reveals a new family of amino acid permeases.
    Isnard AD, Thomas D, Surdin-Kerjan Y.
    J Mol Biol; 1996 Oct 04; 262(4):473-84. PubMed ID: 8893857
    [Abstract] [Full Text] [Related]

  • 15. UGA4 gene expression in Saccharomyces cerevisiae depends on cell growth conditions.
    Bermúdez Moretti M, Correa García S, Batlle A.
    Cell Mol Biol (Noisy-le-grand); 1998 Jun 04; 44(4):585-90. PubMed ID: 9678893
    [Abstract] [Full Text] [Related]

  • 16. Genetic and biochemical characterization of Saccharomyces cerevisiae mutants resistant to trifluoroleucine.
    Casalone E, Fia G, Barberio C, Cavalieri D, Turbanti L, Polsinelli M.
    Res Microbiol; 1997 Jun 04; 148(7):613-23. PubMed ID: 9765846
    [Abstract] [Full Text] [Related]

  • 17. A C-terminal di-leucine motif and nearby sequences are required for NH4(+)-induced inactivation and degradation of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae.
    Hein C, André B.
    Mol Microbiol; 1997 May 04; 24(3):607-16. PubMed ID: 9179853
    [Abstract] [Full Text] [Related]

  • 18. Construction of phosphatidylethanolamine-less strain of Saccharomyces cerevisiae. Effect on amino acid transport.
    Robl I, Grassl R, Tanner W, Opekarová M.
    Yeast; 2001 Feb 04; 18(3):251-60. PubMed ID: 11180458
    [Abstract] [Full Text] [Related]

  • 19. Pas1, a G1 cyclin, regulates amino acid uptake and rescues a delay in G1 arrest in Tsc1 and Tsc2 mutants in Schizosaccharomyces pombe.
    van Slegtenhorst M, Mustafa A, Henske EP.
    Hum Mol Genet; 2005 Oct 01; 14(19):2851-8. PubMed ID: 16115814
    [Abstract] [Full Text] [Related]

  • 20. The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane.
    Makuc J, Paiva S, Schauen M, Krämer R, André B, Casal M, Leão C, Boles E.
    Yeast; 2001 Sep 15; 18(12):1131-43. PubMed ID: 11536335
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.