These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
518 related items for PubMed ID: 8893435
1. In vitro biomechanical comparison of multistrand cables with conventional cervical stabilization. Weis JC, Cunningham BW, Kanayama M, Parker L, McAfee PC. Spine (Phila Pa 1976); 1996 Sep 15; 21(18):2108-14. PubMed ID: 8893435 [Abstract] [Full Text] [Related]
2. Biomechanical comparison of posterior cervical fixation. Mihara H, Cheng BC, David SM, Ohnari K, Zdeblick TA. Spine (Phila Pa 1976); 2001 Aug 01; 26(15):1662-7. PubMed ID: 11474352 [Abstract] [Full Text] [Related]
3. Biomechanical evaluation of cervical spinal stabilization methods in a human cadaveric model. Coe JD, Warden KE, Sutterlin CE, McAfee PC. Spine (Phila Pa 1976); 1989 Oct 01; 14(10):1122-31. PubMed ID: 2588063 [Abstract] [Full Text] [Related]
4. The biomechanical analysis of sublaminar wires and cables using luque segmental spinal instrumentation. Parsons JR, Chokshi BV, Lee CK, Gundlapalli RV, Stamer D. Spine (Phila Pa 1976); 1997 Feb 01; 22(3):267-73. PubMed ID: 9051888 [Abstract] [Full Text] [Related]
5. Comparative mechanical properties of spinal cable and wire fixation systems. Dickman CA, Papadopoulos SM, Crawford NR, Brantley AG, Gealer RL. Spine (Phila Pa 1976); 1997 Mar 15; 22(6):596-604. PubMed ID: 9089931 [Abstract] [Full Text] [Related]
6. A biomechanical analysis of sublaminar and subtransverse process fixation using metal wires and polyethylene cables. Fujita M, Diab M, Xu Z, Puttlitz CM. Spine (Phila Pa 1976); 2006 Sep 01; 31(19):2202-8. PubMed ID: 16946654 [Abstract] [Full Text] [Related]
7. Enhancement of stability following anterior cervical corpectomy: a biomechanical study. Singh K, Vaccaro AR, Kim J, Lorenz EP, Lim TH, An HS. Spine (Phila Pa 1976); 2004 Apr 15; 29(8):845-9. PubMed ID: 15082982 [Abstract] [Full Text] [Related]
8. Biomechanical evaluation of stand-alone interbody fusion cages in the cervical spine. Shimamoto N, Cunningham BW, Dmitriev AE, Minami A, McAfee PC. Spine (Phila Pa 1976); 2001 Oct 01; 26(19):E432-6. PubMed ID: 11698902 [Abstract] [Full Text] [Related]
9. Construct stability of an instrumented 2-level cervical corpectomy model following fatigue testing: biomechanical comparison of circumferential antero-posterior instrumentation versus a novel anterior-only transpedicular screw-plate fixation technique. Koller H, Schmoelz W, Zenner J, Auffarth A, Resch H, Hitzl W, Malekzadeh D, Ernstbrunner L, Blocher M, Mayer M. Eur Spine J; 2015 Dec 01; 24(12):2848-56. PubMed ID: 25612849 [Abstract] [Full Text] [Related]
10. Internal fixation of cervical trauma following corpectomy and reconstruction. The effects of posterior element injury. Spivak JM, Bharam S, Chen D, Kummer FJ. Bull Hosp Jt Dis; 2000 Dec 01; 59(1):47-51. PubMed ID: 10789038 [Abstract] [Full Text] [Related]
12. Biomechanics of an integrated interbody device versus ACDF anterior locking plate in a single-level cervical spine fusion construct. Stein MI, Nayak AN, Gaskins RB, Cabezas AF, Santoni BG, Castellvi AE. Spine J; 2014 Jan 01; 14(1):128-36. PubMed ID: 24231054 [Abstract] [Full Text] [Related]
13. Biomechanical comparison of anterior cervical spine instrumentation techniques with and without supplemental posterior fusion after different corpectomy and discectomy combinations: Laboratory investigation. Setzer M, Eleraky M, Johnson WM, Aghayev K, Tran ND, Vrionis FD. J Neurosurg Spine; 2012 Jun 01; 16(6):579-84. PubMed ID: 22423633 [Abstract] [Full Text] [Related]
14. The stabilizing potential of anterior, posterior and combined techniques for the reconstruction of a 2-level cervical corpectomy model: biomechanical study and first results of ATPS prototyping. Koller H, Schmidt R, Mayer M, Hitzl W, Zenner J, Midderhoff S, Graf N, Resch H, Wilke HJ. Eur Spine J; 2010 Dec 01; 19(12):2137-48. PubMed ID: 20589516 [Abstract] [Full Text] [Related]
15. Anterior cervical plate fixation: a biomechanical study to evaluate the effects of plate design, endplate preparation, and bone mineral density. Dvorak MF, Pitzen T, Zhu Q, Gordon JD, Fisher CG, Oxland TR. Spine (Phila Pa 1976); 2005 Feb 01; 30(3):294-301. PubMed ID: 15682010 [Abstract] [Full Text] [Related]
16. Posterior spinal osteosynthesis for cervical fracture/dislocation using a flexible multistrand cable system: technical note. Huhn SL, Wolf AL, Ecklund J. Neurosurgery; 1991 Dec 01; 29(6):943-6. PubMed ID: 1758614 [Abstract] [Full Text] [Related]
19. A biomechanical evaluation of magnetic resonance imaging-compatible wire in cervical spine fixation. Scuderi GJ, Greenberg SS, Cohen DS, Latta LL, Eismont FJ. Spine (Phila Pa 1976); 1993 Oct 15; 18(14):1991-4. PubMed ID: 8272948 [Abstract] [Full Text] [Related]
20. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Harris BM, Hilibrand AS, Savas PE, Pellegrino A, Vaccaro AR, Siegler S, Albert TJ. Spine (Phila Pa 1976); 2004 Feb 15; 29(4):E65-70. PubMed ID: 15094547 [Abstract] [Full Text] [Related] Page: [Next] [New Search]