These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
174 related items for PubMed ID: 8893861
1. Nitrate binding to Limulus polyphemus subunit type II hemocyanin and its functional implications. Hazes B, Magnus KA, Kalk KH, Bonaventura C, Hol WG. J Mol Biol; 1996 Oct 04; 262(4):532-41. PubMed ID: 8893861 [Abstract] [Full Text] [Related]
2. Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences. Magnus KA, Hazes B, Ton-That H, Bonaventura C, Bonaventura J, Hol WG. Proteins; 1994 Aug 04; 19(4):302-9. PubMed ID: 7984626 [Abstract] [Full Text] [Related]
4. Chloride and pH dependence of cooperative interactions in Limulus polyphemus hemocyanin. Brouwer M, Bonaventura C, Bonaventura J. Prog Clin Biol Res; 1982 Aug 04; 81():231-56. PubMed ID: 6289351 [No Abstract] [Full Text] [Related]
5. Hexamers of subunit II from Limulus hemocyanin (a 48-mer) have the same quaternary structure as whole Panulirus hemocyanin molecules. Magnus KA, Lattman EE, Volbeda A, Hol WG. Proteins; 1991 Aug 04; 9(4):240-7. PubMed ID: 1866430 [Abstract] [Full Text] [Related]
6. Crystal structure of deoxygenated Limulus polyphemus subunit II hemocyanin at 2.18 A resolution: clues for a mechanism for allosteric regulation. Hazes B, Magnus KA, Bonaventura C, Bonaventura J, Dauter Z, Kalk KH, Hol WG. Protein Sci; 1993 Apr 04; 2(4):597-619. PubMed ID: 8518732 [Abstract] [Full Text] [Related]
7. Quantum mechanical analysis of oxygenated and deoxygenated states of hemocyanin: theoretical clues for a plausible allosteric model of oxygen binding. Fariselli P, Bottoni A, Bernardi F, Casadio R. Protein Sci; 1999 Jul 04; 8(7):1546-50. PubMed ID: 10422845 [Abstract] [Full Text] [Related]
8. Limulus polyphemus hemocyanin: 10 A cryo-EM structure, sequence analysis, molecular modelling and rigid-body fitting reveal the interfaces between the eight hexamers. Martin AG, Depoix F, Stohr M, Meissner U, Hagner-Holler S, Hammouti K, Burmester T, Heyd J, Wriggers W, Markl J. J Mol Biol; 2007 Mar 02; 366(4):1332-50. PubMed ID: 17207812 [Abstract] [Full Text] [Related]
9. Structure and stability of arthropodan hemocyanin Limulus polyphemus. Dolashka-Angelova P, Dolashki A, Stevanovic S, Hristova R, Atanasov B, Nikolov P, Voelter W. Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr 02; 61(6):1207-17. PubMed ID: 15741123 [Abstract] [Full Text] [Related]
10. Crystal structure of a functional unit from Octopus hemocyanin. Cuff ME, Miller KI, van Holde KE, Hendrickson WA. J Mol Biol; 1998 May 15; 278(4):855-70. PubMed ID: 9614947 [Abstract] [Full Text] [Related]
11. Metal ion interactions with Limulus polyphemus and Callinectes sapidus hemocyanins: stoichiometry and structural and functional consequences of calcium(II), cadmium(II), zinc(II), and mercury(II) binding. Brouwer M, Bonaventura C, Bonaventura J. Biochemistry; 1983 Sep 27; 22(20):4713-23. PubMed ID: 6626526 [Abstract] [Full Text] [Related]
12. Thermodynamics of oxygenation-linked proton and lactate binding govern the temperature sensitivity of O2 binding in crustacean (Carcinus maenas) hemocyanin. Weber RE, Behrens JW, Malte H, Fago A. J Exp Biol; 2008 Apr 27; 211(Pt 7):1057-62. PubMed ID: 18344479 [Abstract] [Full Text] [Related]
13. Thermodynamics of effector binding to hemocyanin: influence of temperature. Pott A, Menze MA, Grieshaber MK. Arch Biochem Biophys; 2009 Mar 01; 483(1):37-44. PubMed ID: 19141291 [Abstract] [Full Text] [Related]
14. Self-association and oxygen-binding characteristics of the isolated subunits of Limulus polyphemus hemocyanin. Brenowitz M, Bonaventura C, Bonaventura J. Arch Biochem Biophys; 1984 Apr 01; 230(1):238-49. PubMed ID: 6712235 [Abstract] [Full Text] [Related]
15. The interhexameric contacts in the four-hexameric hemocyanin from the tarantula Eurypelma californicum. A tentative mechanism for cooperative behavior. de Haas F, van Bruggen EF. J Mol Biol; 1994 Apr 08; 237(4):464-78. PubMed ID: 8151706 [Abstract] [Full Text] [Related]
16. Bohr-effect and buffering capacity of hemocyanin from the tarantula E. californicum. Hellmann N. Biophys Chem; 2004 Apr 01; 109(1):157-67. PubMed ID: 15059668 [Abstract] [Full Text] [Related]
17. Quaternary structure and functional properties of Penaeus monodon hemocyanin. Beltramini M, Colangelo N, Giomi F, Bubacco L, Di Muro P, Hellmann N, Jaenicke E, Decker H. FEBS J; 2005 Apr 01; 272(8):2060-75. PubMed ID: 15819896 [Abstract] [Full Text] [Related]
18. The structure of a functional unit from the wall of a gastropod hemocyanin offers a possible mechanism for cooperativity. Perbandt M, Guthöhrlein EW, Rypniewski W, Idakieva K, Stoeva S, Voelter W, Genov N, Betzel C. Biochemistry; 2003 Jun 03; 42(21):6341-6. PubMed ID: 12767214 [Abstract] [Full Text] [Related]
19. Effects of known phenoloxidase inhibitors on hemocyanin-derived phenoloxidase from Limulus polyphemus. Wright J, Clark WM, Cain JA, Patterson A, Coates CJ, Nairn J. Comp Biochem Physiol B Biochem Mol Biol; 2012 Jun 03; 163(3-4):303-8. PubMed ID: 22885403 [Abstract] [Full Text] [Related]
20. The nature of the binuclear copper site in Limulus and other hemocyanins. Solomon EI, Eickman NC, Himmelwright RS, Hwang YT, Plon SE, Wilcox DE. Prog Clin Biol Res; 1982 Jun 03; 81():189-230. PubMed ID: 6289350 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]