These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


231 related items for PubMed ID: 8896805

  • 1. Haloperidol and MK-801 block increases in striatal calmodulin resulting from repeated amphetamine treatment.
    Gnegy ME, Hewlett GH, Pimputkar G.
    Brain Res; 1996 Sep 23; 734(1-2):35-42. PubMed ID: 8896805
    [Abstract] [Full Text] [Related]

  • 2. Role of NMDA receptor subtypes in the induction of catalepsy and increase in Fos protein expression after administration of haloperidol.
    Yanahashi S, Hashimoto K, Hattori K, Yuasa S, Iyo M.
    Brain Res; 2004 Jun 11; 1011(1):84-93. PubMed ID: 15140647
    [Abstract] [Full Text] [Related]

  • 3. Dopaminergic basis for the facilitation of brain stimulation reward by the NMDA receptor antagonist, MK-801.
    Olds ME.
    Eur J Pharmacol; 1996 Jun 13; 306(1-3):23-32. PubMed ID: 8813611
    [Abstract] [Full Text] [Related]

  • 4. Repeated amphetamine administration alters the interaction between D1-stimulated adenylyl cyclase activity and calmodulin in rat striatum.
    Roseboom PH, Hewlett GH, Gnegy ME.
    J Pharmacol Exp Ther; 1990 Oct 13; 255(1):197-203. PubMed ID: 2145422
    [Abstract] [Full Text] [Related]

  • 5. Blockade of NMDA receptors by MK-801 reverses the changes in striatal glutamate immunolabeling in 6-OHDA-lesioned rats.
    Robinson S, Krentz L, Moore C, Meshul CK.
    Synapse; 2001 Oct 13; 42(1):54-61. PubMed ID: 11668591
    [Abstract] [Full Text] [Related]

  • 6. Repeated haloperidol increases both calmodulin and a calmodulin-binding protein in rat striatum.
    Gnegy ME, Agrawal A, Hewlett K, Yeung E, Yee S.
    Brain Res Mol Brain Res; 1994 Dec 13; 27(2):195-204. PubMed ID: 7898303
    [Abstract] [Full Text] [Related]

  • 7. Spatial and temporal profile of haloperidol-induced immediate-early gene expression and phosphoCREB binding in the dorsal and ventral striatum of amphetamine-sensitized rats.
    Hsieh HC, Li HY, Lin MY, Chiou YF, Lin SY, Wong CH, Chen JC.
    Synapse; 2002 Sep 15; 45(4):230-44. PubMed ID: 12125044
    [Abstract] [Full Text] [Related]

  • 8. Failure of MK-801 to suppress D1 receptor-mediated induction of locomotor activity and striatal preprotachykinin mRNA expression in the dopamine-depleted rat.
    Campbell BM, Kreipke CW, Walker PD.
    Neuroscience; 2006 Sep 15; 137(2):505-17. PubMed ID: 16289829
    [Abstract] [Full Text] [Related]

  • 9. Increased in vivo phosphorylation state of neuromodulin and synapsin I in striatum from rats treated with repeated amphetamine.
    Iwata S, Hewlett GH, Ferrell ST, Czernik AJ, Meiri KF, Gnegy ME.
    J Pharmacol Exp Ther; 1996 Sep 15; 278(3):1428-34. PubMed ID: 8819530
    [Abstract] [Full Text] [Related]

  • 10. MK-801 alters the effects of priming with L-DOPA on dopamine D1 receptor-induced changes in neuropeptide mRNA levels in the rat striatal output neurons.
    Van De Witte SV, Groenewegen HJ, Voorn P.
    Synapse; 2002 Jan 15; 43(1):1-11. PubMed ID: 11746728
    [Abstract] [Full Text] [Related]

  • 11. Regulation of cholecystokinin mRNA content in rat striatum: a glutamatergic hypothesis.
    Ding XZ, Mocchetti I.
    J Pharmacol Exp Ther; 1992 Oct 15; 263(1):368-73. PubMed ID: 1403798
    [Abstract] [Full Text] [Related]

  • 12. Role of adenosine and N-methyl-D-aspartate receptors in mediating haloperidol-induced gene expression and catalepsy.
    Chartoff EH, Ward RP, Dorsa DM.
    J Pharmacol Exp Ther; 1999 Nov 15; 291(2):531-7. PubMed ID: 10525068
    [Abstract] [Full Text] [Related]

  • 13. Alterations in striatal dopamine overflow during rotational behavior induced by amphetamine, phencyclidine, and MK-801.
    Mele A, Fontana D, Pert A.
    Synapse; 1997 Jul 15; 26(3):218-24. PubMed ID: 9183811
    [Abstract] [Full Text] [Related]

  • 14. Locomotor hyperactivity induced by MK-801 in rats.
    Maj J, Rogóz Z, Skuza G.
    Pol J Pharmacol Pharm; 1991 Jul 15; 43(6):449-58. PubMed ID: 1687944
    [Abstract] [Full Text] [Related]

  • 15. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats.
    Haberny SL, Carr KD.
    Neuroscience; 2005 Jul 15; 132(4):1035-43. PubMed ID: 15857708
    [Abstract] [Full Text] [Related]

  • 16. Methamphetamine decreases calcium-calmodulin dependent protein kinase II activity in discrete rat brain regions.
    Suemaru J, Akiyama K, Tanabe Y, Kuroda S.
    Synapse; 2000 Jun 01; 36(3):155-66. PubMed ID: 10819896
    [Abstract] [Full Text] [Related]

  • 17. Glutamatergic regulation of long-term grafts of fetal lateral ganglionic eminence in a rat model of Huntington's disease.
    Hussain N, Flumerfelt BA, Rajakumar N.
    Neurobiol Dis; 2004 Apr 01; 15(3):648-53. PubMed ID: 15056473
    [Abstract] [Full Text] [Related]

  • 18. Nitrous oxide and xenon prevent amphetamine-induced carrier-mediated dopamine release in a memantine-like fashion and protect against behavioral sensitization.
    David HN, Ansseau M, Lemaire M, Abraini JH.
    Biol Psychiatry; 2006 Jul 01; 60(1):49-57. PubMed ID: 16427030
    [Abstract] [Full Text] [Related]

  • 19. Antipsychotics affect multiple calcium calmodulin dependent proteins.
    Rushlow WJ, Seah C, Sutton LP, Bjelica A, Rajakumar N.
    Neuroscience; 2009 Jul 07; 161(3):877-86. PubMed ID: 19289156
    [Abstract] [Full Text] [Related]

  • 20. Enhanced dopamine release and phosphorylation of synapsin I and neuromodulin in striatal synaptosomes after repeated amphetamine.
    Iwata SI, Hewlett GH, Ferrell ST, Kantor L, Gnegy ME.
    J Pharmacol Exp Ther; 1997 Dec 07; 283(3):1445-52. PubMed ID: 9400020
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.