These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


249 related items for PubMed ID: 889858

  • 1. Diffusion coefficients of single bile salt and bile salt-mixed lipid micelles in aqueous solution measured by quasielastic laser light scattering.
    Oh SY, McDonnell ME, Holzbach RT, Jamieson AM.
    Biochim Biophys Acta; 1977 Jul 20; 488(1):25-35. PubMed ID: 889858
    [Abstract] [Full Text] [Related]

  • 2. Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions.
    Mazer NA, Benedek GB, Carey MC.
    Biochemistry; 1980 Feb 19; 19(4):601-15. PubMed ID: 7356951
    [Abstract] [Full Text] [Related]

  • 3. Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile.
    Cohen DE, Thurston GM, Chamberlin RA, Benedek GB, Carey MC.
    Biochemistry; 1998 Oct 20; 37(42):14798-814. PubMed ID: 9778354
    [Abstract] [Full Text] [Related]

  • 4. Diffusion of mixed micelles of bile salt-lecithin in amylopectin gels: a Fourier transform infrared microspectroscopy approach.
    Sun L, Durrani CM, Donald AM, Fillery-Travis AJ, Leney J.
    Biophys Chem; 1996 Oct 30; 61(2-3):143-50. PubMed ID: 8956485
    [Abstract] [Full Text] [Related]

  • 5. Quasielastic light scattering studies of aqueous biliary lipid systems and native bile.
    Mazer NA.
    Hepatology; 1990 Sep 30; 12(3 Pt 2):39S-44S. PubMed ID: 2210655
    [Abstract] [Full Text] [Related]

  • 6. Dynamic laser light scattering studies of the micelle to vesicle transition in model and native bile.
    Schurtenberger P, Mazer NA, Känzig W.
    Hepatology; 1984 Sep 30; 4(5 Suppl):143S-147S. PubMed ID: 6479870
    [Abstract] [Full Text] [Related]

  • 7. Thermodynamic and molecular basis for dissimilar cholesterol-solubilizing capacities by micellar solutions of bile salts: cases of sodium chenodeoxycholate and sodium ursodeoxycholate and their glycine and taurine conjugates.
    Carey MC, Montet JC, Phillips MC, Armstrong MJ, Mazer NA.
    Biochemistry; 1981 Jun 09; 20(12):3637-48. PubMed ID: 7260061
    [Abstract] [Full Text] [Related]

  • 8. Structural dimorphism of bile salt/lecithin mixed micelles. A possible regulatory mechanism for cholesterol solubility in bile? X-ray structure analysis.
    Müller K.
    Biochemistry; 1981 Jan 20; 20(2):404-14. PubMed ID: 7470489
    [Abstract] [Full Text] [Related]

  • 9. Behavior of cholesterol and spin-labeled cholestane in model bile systems studied by electron spin resonance and synchrotron x-ray.
    Sömjen GJ, Lipka G, Schulthess G, Koch MH, Wachtel E, Gilat T, Hauser H.
    Biophys J; 1995 Jun 20; 68(6):2342-9. PubMed ID: 7647238
    [Abstract] [Full Text] [Related]

  • 10. Quasi-elastic light-scattering studies of aqueous biliary lipid systems. Cholesterol solubilization and precipitation in model bile solutions.
    Mazer NA, Carey MC.
    Biochemistry; 1983 Jan 18; 22(2):426-42. PubMed ID: 6824637
    [Abstract] [Full Text] [Related]

  • 11. Stability of mixed micellar systems made by solubilizing phosphatidylcholine-cholesterol vesicles by bile salts.
    Lichtenberg D, Ragimova S, Bor A, Almog S, Vinkler C, Peled Y, Halpern Z.
    Hepatology; 1990 Sep 18; 12(3 Pt 2):149S-153S; discussion 153S-154S. PubMed ID: 2210643
    [Abstract] [Full Text] [Related]

  • 12. Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 1. Phase behavior and aggregation states of model lipid systems patterned after aqueous duodenal contents of healthy adult human beings.
    Staggers JE, Hernell O, Stafford RJ, Carey MC.
    Biochemistry; 1990 Feb 27; 29(8):2028-40. PubMed ID: 2328237
    [Abstract] [Full Text] [Related]

  • 13. Diffusion in bile and its implications on detergency.
    Sehlin RC, Cussler EL, Evans DF.
    Biochim Biophys Acta; 1975 Jun 23; 388(3):385-96. PubMed ID: 1137718
    [Abstract] [Full Text] [Related]

  • 14. Structural characterization of the micelle-vesicle transition in lecithin-bile salt solutions.
    Long MA, Kaler EW, Lee SP.
    Biophys J; 1994 Oct 23; 67(4):1733-42. PubMed ID: 7819505
    [Abstract] [Full Text] [Related]

  • 15. Aqueous bile salt-lecithin-cholesterol systems: equilibrium aspects.
    Carey MC.
    Hepatology; 1984 Oct 23; 4(5 Suppl):151S-154S. PubMed ID: 6479872
    [Abstract] [Full Text] [Related]

  • 16. Coexistence of simple and mixed bile salt-lecithin micelles: an NMR self-diffusion study.
    Schurtenberger P, Lindman B.
    Biochemistry; 1985 Dec 03; 24(25):7161-5. PubMed ID: 4084572
    [Abstract] [Full Text] [Related]

  • 17. Separation and quantitation of cholesterol "carriers" in bile.
    Donovan JM, Carey MC.
    Hepatology; 1990 Sep 03; 12(3 Pt 2):94S-104S; discussion 104S-105S. PubMed ID: 2210665
    [Abstract] [Full Text] [Related]

  • 18. Quasielastic light scattering studies of aqueous biliary lipid systems. Size, shape, and thermodynamics of bile salt micelles.
    Mazer NA, Carey MC, Kwasnick RF, Benedek GB.
    Biochemistry; 1979 Jul 10; 18(14):3064-75. PubMed ID: 465453
    [No Abstract] [Full Text] [Related]

  • 19. Influence of bile salts on molecular interactions between sphingomyelin and cholesterol: relevance to bile formation and stability.
    van Erpecum KJ, Carey MC.
    Biochim Biophys Acta; 1997 Apr 21; 1345(3):269-82. PubMed ID: 9150247
    [Abstract] [Full Text] [Related]

  • 20. The intermicellar bile salt concentration in equilibrium with the mixed-micelles of human bile.
    Duane WC.
    Biochim Biophys Acta; 1975 Aug 25; 398(2):275-86. PubMed ID: 1182138
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.