These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


294 related items for PubMed ID: 8899418

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. The influence of valinomycin induced membrane potential on erythrocyte shape.
    Glaser R, Gengnagel C, Donath J.
    Biomed Biochim Acta; 1991; 50(7):869-77. PubMed ID: 1759965
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Effect of antibodies to membrane skeletal proteins on the shape of erythrocytes and their ability to respond to shape-modulating agents. Important role of 4.1 protein in the determination/maintenance of the discoid shape of erythrocytes.
    Pestonjamasp KN, Mehta NG.
    Exp Cell Res; 1995 Jul; 219(1):74-81. PubMed ID: 7628552
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The shape of red blood cells as a function of membrane potential and temperature.
    Glaser R.
    J Membr Biol; 1979 Dec 31; 51(3-4):217-28. PubMed ID: 43897
    [Abstract] [Full Text] [Related]

  • 8. Characterization of morphological response of red cells in a sucrose solution.
    Rudenko SV.
    Blood Cells Mol Dis; 2009 Dec 31; 42(3):252-61. PubMed ID: 19249232
    [Abstract] [Full Text] [Related]

  • 9. [Influence of new hybrid antioxidants ichphans on erythrocyte morphology].
    Parshina EIu, Gendel' LIa, Rubin AB.
    Biofizika; 2004 Dec 31; 49(6):1094-8. PubMed ID: 15612552
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.
    Svetina S, Kuzman D, Waugh RE, Ziherl P, Zeks B.
    Bioelectrochemistry; 2004 May 31; 62(2):107-13. PubMed ID: 15039011
    [Abstract] [Full Text] [Related]

  • 14. Spherocyte shape transformation and release of tubular nanovesicles in human erythrocytes.
    Iglic A, Veranic P, Jezernik K, Fosnaric M, Kamin B, Hägerstrand H, Kralj-Iglic V.
    Bioelectrochemistry; 2004 May 31; 62(2):159-61. PubMed ID: 15039020
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Shape transformations induced by amphiphiles in erythrocytes.
    Isomaa B, Hägerstrand H, Paatero G.
    Biochim Biophys Acta; 1987 May 12; 899(1):93-103. PubMed ID: 3567196
    [Abstract] [Full Text] [Related]

  • 18. Membrane potential and human erythrocyte shape.
    Gedde MM, Huestis WH.
    Biophys J; 1997 Mar 12; 72(3):1220-33. PubMed ID: 9138568
    [Abstract] [Full Text] [Related]

  • 19. On the size of pores arising in erythrocytes under the action of detergents.
    Senkovich OA, Chernitsky EA.
    Membr Cell Biol; 1998 Mar 12; 11(5):679-89. PubMed ID: 9672884
    [Abstract] [Full Text] [Related]

  • 20. Vesiculation induced by amphiphiles in erythrocytes.
    Hägerstrand H, Isomaa B.
    Biochim Biophys Acta; 1989 Jul 10; 982(2):179-86. PubMed ID: 2473779
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.