These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
436 related items for PubMed ID: 8902262
1. A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structures of P450 101, P450 102, and P450 108. de Groot MJ, Vermeulen NP, Kramer JD, van Acker FA, Donné-Op den Kelder GM. Chem Res Toxicol; 1996; 9(7):1079-91. PubMed ID: 8902262 [Abstract] [Full Text] [Related]
2. A refined substrate model for human cytochrome P450 2D6. de Groot MJ, Bijloo GJ, Martens BJ, van Acker FA, Vermeulen NP. Chem Res Toxicol; 1997 Jan; 10(1):41-8. PubMed ID: 9074801 [Abstract] [Full Text] [Related]
3. A model for human cytochrome P450 2D6 based on homology modeling and NMR studies of substrate binding. Modi S, Paine MJ, Sutcliffe MJ, Lian LY, Primrose WU, Wolf CR, Roberts GC. Biochemistry; 1996 Apr 09; 35(14):4540-50. PubMed ID: 8605204 [Abstract] [Full Text] [Related]
4. Impact of incorporating the 2C5 crystal structure into comparative models of cytochrome P450 2D6. Kirton SB, Kemp CA, Tomkinson NP, St-Gallay S, Sutcliffe MJ. Proteins; 2002 Nov 01; 49(2):216-31. PubMed ID: 12211002 [Abstract] [Full Text] [Related]
5. Validation of model of cytochrome P450 2D6: an in silico tool for predicting metabolism and inhibition. Kemp CA, Flanagan JU, van Eldik AJ, Maréchal JD, Wolf CR, Roberts GC, Paine MJ, Sutcliffe MJ. J Med Chem; 2004 Oct 21; 47(22):5340-6. PubMed ID: 15481972 [Abstract] [Full Text] [Related]
7. New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme. Wang B, Yang LP, Zhang XZ, Huang SQ, Bartlam M, Zhou SF. Drug Metab Rev; 2009 Mar 01; 41(4):573-643. PubMed ID: 19645588 [Abstract] [Full Text] [Related]
8. Analysis of CYP2D6 substrate interactions by computational methods. Ito Y, Kondo H, Goldfarb PS, Lewis DF. J Mol Graph Model; 2008 Feb 01; 26(6):947-56. PubMed ID: 17764997 [Abstract] [Full Text] [Related]
9. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Gustafsson MC, Roitel O, Marshall KR, Noble MA, Chapman SK, Pessegueiro A, Fulco AJ, Cheesman MR, von Wachenfeldt C, Munro AW. Biochemistry; 2004 May 11; 43(18):5474-87. PubMed ID: 15122913 [Abstract] [Full Text] [Related]
10. Crystal structure of inhibitor-bound P450BM-3 reveals open conformation of substrate access channel. Haines DC, Chen B, Tomchick DR, Bondlela M, Hegde A, Machius M, Peterson JA. Biochemistry; 2008 Mar 25; 47(12):3662-70. PubMed ID: 18298086 [Abstract] [Full Text] [Related]
11. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. Lüdemann SK, Lounnas V, Wade RC. J Mol Biol; 2000 Nov 10; 303(5):797-811. PubMed ID: 11061976 [Abstract] [Full Text] [Related]
12. Active site analysis of P450 enzymes: comparative magnetic circular dichroism spectroscopy. Andersson LA, Johnson AK, Peterson JA. Arch Biochem Biophys; 1997 Sep 01; 345(1):79-87. PubMed ID: 9281314 [Abstract] [Full Text] [Related]
13. Ketoconazole-induced conformational changes in the active site of cytochrome P450eryF. Cupp-Vickery JR, Garcia C, Hofacre A, McGee-Estrada K. J Mol Biol; 2001 Aug 03; 311(1):101-10. PubMed ID: 11469860 [Abstract] [Full Text] [Related]
14. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency. Huang WC, Westlake AC, Maréchal JD, Joyce MG, Moody PC, Roberts GC. J Mol Biol; 2007 Oct 26; 373(3):633-51. PubMed ID: 17868686 [Abstract] [Full Text] [Related]
15. Role of glutamic acid 216 in cytochrome P450 2D6 substrate binding and catalysis. Guengerich FP, Hanna IH, Martin MV, Gillam EM. Biochemistry; 2003 Feb 11; 42(5):1245-53. PubMed ID: 12564927 [Abstract] [Full Text] [Related]
16. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine as a substrate of cytochrome P450 2D6: allosteric effects of NADPH-cytochrome P450 reductase. Modi S, Gilham DE, Sutcliffe MJ, Lian LY, Primrose WU, Wolf CR, Roberts GC. Biochemistry; 1997 Apr 15; 36(15):4461-70. PubMed ID: 9109653 [Abstract] [Full Text] [Related]
17. Identification of critical residues in novel drug metabolizing mutants of cytochrome P450 BM3 using random mutagenesis. van Vugt-Lussenburg BM, Stjernschantz E, Lastdrager J, Oostenbrink C, Vermeulen NP, Commandeur JN. J Med Chem; 2007 Feb 08; 50(3):455-61. PubMed ID: 17266197 [Abstract] [Full Text] [Related]
18. Use of kinetic isotope effects to delineate the role of phenylalanine 87 in P450(BM-3). Rock DA, Boitano AE, Wahlstrom JL, Rock DA, Jones JP. Bioorg Chem; 2002 Apr 08; 30(2):107-18. PubMed ID: 12020135 [Abstract] [Full Text] [Related]
19. Novel approach to predicting P450-mediated drug metabolism: development of a combined protein and pharmacophore model for CYP2D6. de Groot MJ, Ackland MJ, Horne VA, Alex AA, Jones BC. J Med Chem; 1999 May 06; 42(9):1515-24. PubMed ID: 10229622 [Abstract] [Full Text] [Related]
20. Heterologous expression of cytochrome P450 2D6 mutants, electron transfer, and catalysis of bufuralol hydroxylation: the role of aspartate 301 in structural integrity. Hanna IH, Kim MS, Guengerich FP. Arch Biochem Biophys; 2001 Sep 15; 393(2):255-61. PubMed ID: 11556812 [Abstract] [Full Text] [Related] Page: [Next] [New Search]