These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
494 related items for PubMed ID: 8904603
1. Contribution of nitric oxide and prostaglandins to reactive hyperemia in human forearm. Engelke KA, Halliwill JR, Proctor DN, Dietz NM, Joyner MJ. J Appl Physiol (1985); 1996 Oct; 81(4):1807-14. PubMed ID: 8904603 [Abstract] [Full Text] [Related]
2. Prostaglandins do not contribute to the nitric oxide-mediated compensatory vasodilation in hypoperfused exercising muscle. Casey DP, Joyner MJ. Am J Physiol Heart Circ Physiol; 2011 Jul; 301(1):H261-8. PubMed ID: 21536852 [Abstract] [Full Text] [Related]
3. The contribution of nitric oxide to exercise hyperemia in the human forearm. Gordon MB, Jain R, Beckman JA, Creager MA. Vasc Med; 2002 Aug; 7(3):163-8. PubMed ID: 12553738 [Abstract] [Full Text] [Related]
4. Relative contribution of vasodilator prostanoids, NO, and KATP channels to human forearm metabolic vasodilation. Farouque HM, Meredith IT. Am J Physiol Heart Circ Physiol; 2003 Jun; 284(6):H2405-11. PubMed ID: 12598235 [Abstract] [Full Text] [Related]
5. Mechanisms of ATP-mediated vasodilation in humans: modest role for nitric oxide and vasodilating prostaglandins. Crecelius AR, Kirby BS, Richards JC, Garcia LJ, Voyles WF, Larson DG, Luckasen GJ, Dinenno FA. Am J Physiol Heart Circ Physiol; 2011 Oct; 301(4):H1302-10. PubMed ID: 21784984 [Abstract] [Full Text] [Related]
6. Role of nitric oxide in reactive hyperemia in human forearm vessels. Tagawa T, Imaizumi T, Endo T, Shiramoto M, Harasawa Y, Takeshita A. Circulation; 1994 Nov; 90(5):2285-90. PubMed ID: 7955185 [Abstract] [Full Text] [Related]
7. Endothelial release of nitric oxide contributes to the vasodilator effect of adenosine in humans. Smits P, Williams SB, Lipson DE, Banitt P, Rongen GA, Creager MA. Circulation; 1995 Oct 15; 92(8):2135-41. PubMed ID: 7554193 [Abstract] [Full Text] [Related]
8. Bimodal distribution of vasodilator responsiveness to adenosine due to difference in nitric oxide contribution: implications for exercise hyperemia. Martin EA, Nicholson WT, Eisenach JH, Charkoudian N, Joyner MJ. J Appl Physiol (1985); 2006 Aug 15; 101(2):492-9. PubMed ID: 16614358 [Abstract] [Full Text] [Related]
9. Postischemic vasodilation in human forearm is dependent on endothelium-derived nitric oxide. Meredith IT, Currie KE, Anderson TJ, Roddy MA, Ganz P, Creager MA. Am J Physiol; 1996 Apr 15; 270(4 Pt 2):H1435-40. PubMed ID: 8967386 [Abstract] [Full Text] [Related]
10. Roles of nitric oxide and prostaglandins in the hyperemic response to a maximal metabolic stimulus: redundancy prevails. Lopez MG, Silva BM, Joyner MJ, Casey DP. Eur J Appl Physiol; 2013 Jun 15; 113(6):1449-56. PubMed ID: 23250568 [Abstract] [Full Text] [Related]
11. Reactive hyperemia occurs via activation of inwardly rectifying potassium channels and Na+/K+-ATPase in humans. Crecelius AR, Richards JC, Luckasen GJ, Larson DG, Dinenno FA. Circ Res; 2013 Sep 27; 113(8):1023-32. PubMed ID: 23940309 [Abstract] [Full Text] [Related]
12. Metabolic vasodilation in the human forearm is preserved in hypercholesterolemia despite impairment of endothelium-dependent and independent vasodilation. Duffy SJ, New G, Harper RW, Meredith IT. Cardiovasc Res; 1999 Aug 15; 43(3):721-30. PubMed ID: 10690343 [Abstract] [Full Text] [Related]
13. Effects of acetylcholine and nitric oxide on forearm blood flow at rest and after a single muscle contraction. Brock RW, Tschakovsky ME, Shoemaker JK, Halliwill JR, Joyner MJ, Hughson RL. J Appl Physiol (1985); 1998 Dec 15; 85(6):2249-54. PubMed ID: 9843549 [Abstract] [Full Text] [Related]
14. Ischemic exercise hyperemia in the human forearm: reproducibility and roles of adenosine and nitric oxide. Lopez MG, Silva BM, Joyner MJ, Casey DP. Eur J Appl Physiol; 2012 Jun 15; 112(6):2065-72. PubMed ID: 21947452 [Abstract] [Full Text] [Related]
15. Relative contribution of vasodilator prostanoids and NO to metabolic vasodilation in the human forearm. Duffy SJ, New G, Tran BT, Harper RW, Meredith IT. Am J Physiol; 1999 Feb 15; 276(2):H663-70. PubMed ID: 9950869 [Abstract] [Full Text] [Related]
16. Effects of combined inhibition of ATP-sensitive potassium channels, nitric oxide, and prostaglandins on hyperemia during moderate exercise. Schrage WG, Dietz NM, Joyner MJ. J Appl Physiol (1985); 2006 May 15; 100(5):1506-12. PubMed ID: 16469932 [Abstract] [Full Text] [Related]
17. Baseline blood flow and bradykinin-induced vasodilator responses in the human forearm are insensitive to the cytochrome P450 2C9 (CYP2C9) inhibitor sulphaphenazole. Passauer J, Büssemaker E, Lässig G, Pistrosch F, Fauler J, Gross P, Fleming I. Clin Sci (Lond); 2003 Oct 15; 105(4):513-8. PubMed ID: 12826020 [Abstract] [Full Text] [Related]
18. Role of nitric oxide in exercise-induced vasodilation of the forearm. Endo T, Imaizumi T, Tagawa T, Shiramoto M, Ando S, Takeshita A. Circulation; 1994 Dec 15; 90(6):2886-90. PubMed ID: 7994834 [Abstract] [Full Text] [Related]
19. Role of nitric oxide in exercise hyperaemia during prolonged rhythmic handgripping in humans. Dyke CK, Proctor DN, Dietz NM, Joyner MJ. J Physiol; 1995 Oct 01; 488 ( Pt 1)(Pt 1):259-65. PubMed ID: 8568663 [Abstract] [Full Text] [Related]
20. Local inhibition of nitric oxide and prostaglandins independently reduces forearm exercise hyperaemia in humans. Schrage WG, Joyner MJ, Dinenno FA. J Physiol; 2004 Jun 01; 557(Pt 2):599-611. PubMed ID: 15047770 [Abstract] [Full Text] [Related] Page: [Next] [New Search]