These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Hogg D, Pell G, Dupree P, Goubet F, Martín-Orúe SM, Armand S, Gilbert HJ. Biochem J; 2003 May 01; 371(Pt 3):1027-43. PubMed ID: 12523937 [Abstract] [Full Text] [Related]
8. Fungal enzyme sets for plant polysaccharide degradation. van den Brink J, de Vries RP. Appl Microbiol Biotechnol; 2011 Sep 01; 91(6):1477-92. PubMed ID: 21785931 [Abstract] [Full Text] [Related]
9. Genome Sequence of Microbulbifer mangrovi DD-13T Reveals Its Versatility to Degrade Multiple Polysaccharides. Imran M, Pant P, Shanbhag YP, Sawant SV, Ghadi SC. Mar Biotechnol (NY); 2017 Feb 01; 19(1):116-124. PubMed ID: 28161851 [Abstract] [Full Text] [Related]
10. Microbial starch-binding domain. Rodríguez-Sanoja R, Oviedo N, Sánchez S. Curr Opin Microbiol; 2005 Jun 01; 8(3):260-7. PubMed ID: 15939348 [Abstract] [Full Text] [Related]
11. Three microbial strategies for plant cell wall degradation. Wilson DB. Ann N Y Acad Sci; 2008 Mar 01; 1125():289-97. PubMed ID: 18378599 [Abstract] [Full Text] [Related]
12. Modification of polysaccharides and plant cell wall by endo-1,4-beta-glucanase and cellulose-binding domains. Levy I, Shani Z, Shoseyov O. Biomol Eng; 2002 Jun 01; 19(1):17-30. PubMed ID: 12103362 [Abstract] [Full Text] [Related]
13. Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Minic Z, Jouanin L. Plant Physiol Biochem; 2006 Jun 01; 44(7-9):435-49. PubMed ID: 17023165 [Abstract] [Full Text] [Related]
14. Distribution and diversity of enzymes for polysaccharide degradation in fungi. Berlemont R. Sci Rep; 2017 Mar 16; 7(1):222. PubMed ID: 28302998 [Abstract] [Full Text] [Related]
15. Carbohydrate-binding module assisting glycosynthase-catalysed polymerizations. Codera V, Gilbert HJ, Faijes M, Planas A. Biochem J; 2015 Aug 15; 470(1):15-22. PubMed ID: 26251443 [Abstract] [Full Text] [Related]
16. Cloning, sequencing, and expression of the gene encoding a multidomain endo-beta-1,4-xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. Waeonukul R, Pason P, Kyu KL, Sakka K, Kosugi A, Mori Y, Ratanakhanokchai K. J Microbiol Biotechnol; 2009 Mar 15; 19(3):277-85. PubMed ID: 19349753 [Abstract] [Full Text] [Related]
17. Recent advances in microbial raw starch degrading enzymes. Sun H, Zhao P, Ge X, Xia Y, Hao Z, Liu J, Peng M. Appl Biochem Biotechnol; 2010 Feb 15; 160(4):988-1003. PubMed ID: 19277485 [Abstract] [Full Text] [Related]
19. Depiction of carbohydrate-active enzyme diversity in Caldicellulosiruptor sp. F32 at the genome level reveals insights into distinct polysaccharide degradation features. Meng DD, Ying Y, Zhang KD, Lu M, Li FL. Mol Biosyst; 2015 Nov 04; 11(11):3164-73. PubMed ID: 26392378 [Abstract] [Full Text] [Related]
20. Characterization of the autolytic enzymes of Clostridium perfringens. Williamson R, Ward JB. J Gen Microbiol; 1979 Oct 04; 114(2):349-54. PubMed ID: 44314 [Abstract] [Full Text] [Related] Page: [Next] [New Search]