These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


132 related items for PubMed ID: 890894

  • 1. Wall shear stress distribution in a model canine artery during steady flow.
    Lutz RJ, Cannon JN, Bischoff KB, Dedrick RL, Stiles RK, Fry DL.
    Circ Res; 1977 Sep; 41(3):391-9. PubMed ID: 890894
    [Abstract] [Full Text] [Related]

  • 2. Comparison of steady and pulsatile flow in a double branching arterial model.
    Lutz RJ, Hsu L, Menawat A, Zrubek J, Edwards K.
    J Biomech; 1983 Sep; 16(9):753-66. PubMed ID: 6643546
    [Abstract] [Full Text] [Related]

  • 3. Sinusoidal variation of wall shear stress in daughter tube through 45 deg branch model in laminar flow.
    Yamaguchi R, Kohtoh K.
    J Biomech Eng; 1994 Feb; 116(1):119-26. PubMed ID: 8189707
    [Abstract] [Full Text] [Related]

  • 4. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions.
    Pedersen EM, Sung HW, Burlson AC, Yoganathan AP.
    J Biomech; 1993 Oct; 26(10):1237-47. PubMed ID: 8253828
    [Abstract] [Full Text] [Related]

  • 5. Numerical study on the effect of steady axial flow development in the human aorta on local shear stresses in abdominal aortic branches.
    Shipkowitz T, Rodgers VG, Frazin LJ, Chandran KB.
    J Biomech; 1998 Nov; 31(11):995-1007. PubMed ID: 9880056
    [Abstract] [Full Text] [Related]

  • 6. The effect of celiac and renal artery outflows on near-wall velocities in the porcine iliac arteries.
    Clingan PA, Friedman MH.
    Ann Biomed Eng; 2000 Mar; 28(3):302-8. PubMed ID: 10784094
    [Abstract] [Full Text] [Related]

  • 7. Flow patterns in the abdominal aorta under simulated postprandial and exercise conditions: an experimental study.
    Ku DN, Glagov S, Moore JE, Zarins CK.
    J Vasc Surg; 1989 Feb; 9(2):309-16. PubMed ID: 2918626
    [Abstract] [Full Text] [Related]

  • 8. Numerical simulation of steady flow fields in a model of abdominal aorta with its peripheral branches.
    Lee D, Chen JY.
    J Biomech; 2002 Aug; 35(8):1115-22. PubMed ID: 12126670
    [Abstract] [Full Text] [Related]

  • 9. The horseshoe vortex: a secondary flow generated in arteries with stenosis, bifurcation, and branchings.
    Fukushima T, Azuma T.
    Biorheology; 1982 Aug; 19(1/2):143-54. PubMed ID: 7093448
    [Abstract] [Full Text] [Related]

  • 10. A computer simulation of the blood flow at the aortic bifurcation with flexible walls.
    Lou Z, Yang WJ.
    J Biomech Eng; 1993 Aug; 115(3):306-15. PubMed ID: 8231147
    [Abstract] [Full Text] [Related]

  • 11. Calculations of pulsatile flow through a branch: implications for the hemodynamics of atherogenesis.
    Friedman MH, O'Brien V, Ehrlich LW.
    Circ Res; 1975 Feb; 36(2):277-85. PubMed ID: 1116238
    [Abstract] [Full Text] [Related]

  • 12. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress.
    Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S.
    Circ Res; 1983 Oct; 53(4):502-14. PubMed ID: 6627609
    [Abstract] [Full Text] [Related]

  • 13. Comments on "Wall shear stress distribution in a model canine artery during steady flow" which appeared in Circ Res 41: 391-399, 1977.
    Schwartz AJ.
    Circ Res; 1982 Apr; 50(4):590. PubMed ID: 7067065
    [No Abstract] [Full Text] [Related]

  • 14. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis.
    Moore JE, Xu C, Glagov S, Zarins CK, Ku DN.
    Atherosclerosis; 1994 Oct; 110(2):225-40. PubMed ID: 7848371
    [Abstract] [Full Text] [Related]

  • 15. Flow patterns and preferred sites of atherosclerotic lesions in the human aorta - II. Abdominal aorta.
    Endo S, Goldsmith HL, Karino T.
    Biorheology; 2014 Oct; 51(4-5):257-74. PubMed ID: 25281597
    [Abstract] [Full Text] [Related]

  • 16. Influence of vasoactive drugs on wall shear stress distribution in the abdominal aortic bifurcation: an in vitro study.
    Lee CS, Tarbell JM.
    Ann Biomed Eng; 1998 Oct; 26(2):200-12. PubMed ID: 9525761
    [Abstract] [Full Text] [Related]

  • 17. Variations in geometry and shear rate distribution in casts of human aortic bifurcations.
    Mark FF, Bargeron CB, Deters OJ, Friedman MH.
    J Biomech; 1989 Oct; 22(6-7):577-82. PubMed ID: 2530232
    [Abstract] [Full Text] [Related]

  • 18. Flow patterns in dog aortic arch under a steady flow condition simulating mid-systole.
    Endo S, Sohara Y, Karino T.
    Heart Vessels; 1996 Oct; 11(4):180-91. PubMed ID: 9119807
    [Abstract] [Full Text] [Related]

  • 19. Shear stress in atherosclerosis, and vascular remodelling.
    Krams R, Wentzel JJ, Oomen JA, Schuurbiers JC, Andhyiswara I, Kloet J, Post M, de Smet B, Borst C, Slager CJ, Serruys PW.
    Semin Interv Cardiol; 1998 Mar; 3(1):39-44. PubMed ID: 10094183
    [Abstract] [Full Text] [Related]

  • 20. Experimental determination of velocity profiles and wall shear rate along the rabbit aortoiliac bifurcation: relationship to vessel wall low-density lipoprotein (LDL) metabolism.
    Mandarino WA, Berceli SA, Sheppeck RA, Borovetz HS.
    J Biomech; 1992 Sep; 25(9):985-93. PubMed ID: 1387646
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.