These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Crystal structure of the yeast cell-cycle control protein, p13suc1, in a strand-exchanged dimer. Khazanovich N, Bateman K, Chernaia M, Michalak M, James M. Structure; 1996 Mar 15; 4(3):299-309. PubMed ID: 8805536 [Abstract] [Full Text] [Related]
4. Stability and folding of the cell cycle regulatory protein, p13(suc1). Rousseau F, Schymkowitz JW, Sánchez del Pino M, Itzhaki LS. J Mol Biol; 1998 Nov 27; 284(2):503-19. PubMed ID: 9813133 [Abstract] [Full Text] [Related]
5. Crystal structure of the cell cycle-regulatory protein suc1 reveals a beta-hinge conformational switch. Bourne Y, Arvai AS, Bernstein SL, Watson MH, Reed SI, Endicott JE, Noble ME, Johnson LN, Tainer JA. Proc Natl Acad Sci U S A; 1995 Oct 24; 92(22):10232-6. PubMed ID: 7479758 [Abstract] [Full Text] [Related]
6. p13(SUC1) and the WW domain of PIN1 bind to the same phosphothreonine-proline epitope. Landrieu I, Odaert B, Wieruszeski JM, Drobecq H, Rousselot-Pailley P, Inze D, Lippens G. J Biol Chem; 2001 Jan 12; 276(2):1434-8. PubMed ID: 11013245 [Abstract] [Full Text] [Related]
11. [Similarity of Spectral Profiles with Individual Fluorescence Lifetime of Tryptophan in Proteins of Different Structure]. Nemtseva EV, Lashchuk OO, Gerasimova MA. Biofizika; 2016 Jan 12; 61(2):231-8. PubMed ID: 27192823 [Abstract] [Full Text] [Related]
12. Characterization of the folding and unfolding reactions of a small beta-barrel protein of novel topology, the MTCP1 oncogene product P13. Roumestand C, Boyer M, Guignard L, Barthe P, Royer CA. J Mol Biol; 2001 Sep 07; 312(1):247-59. PubMed ID: 11545600 [Abstract] [Full Text] [Related]
16. The folding pathway of the cell-cycle regulatory protein p13suc1: clues for the mechanism of domain swapping. Schymkowitz JW, Rousseau F, Irvine LR, Itzhaki LS. Structure; 2000 Jan 15; 8(1):89-100. PubMed ID: 10673431 [Abstract] [Full Text] [Related]
17. An equilibrium study of the dependence of secondary and tertiary structure of creatine kinase on subunit association. Grossman SH. Biochim Biophys Acta; 1994 Nov 16; 1209(1):19-23. PubMed ID: 7947978 [Abstract] [Full Text] [Related]
18. Solution NMR study of the monomeric form of p13suc1 protein sheds light on the hinge region determining the affinity for a phosphorylated substrate. Odaert B, Landrieu I, Dijkstra K, Schuurman-Wolters G, Casteels P, Wieruszeski JM, Inze D, Scheek R, Lippens G. J Biol Chem; 2002 Apr 05; 277(14):12375-81. PubMed ID: 11812792 [Abstract] [Full Text] [Related]
19. Mitosis-specific phosphorylation of gar2, a fission yeast nucleolar protein structurally related to nucleolin. Gulli MP, Faubladier M, Sicard H, Caizergues-Ferrer M. Chromosoma; 1997 Jun 05; 105(7-8):532-41. PubMed ID: 9211981 [Abstract] [Full Text] [Related]
20. Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase. Mersol JV, Steel DG, Gafni A. Biophys Chem; 1993 Dec 05; 48(2):281-91. PubMed ID: 8298060 [Abstract] [Full Text] [Related] Page: [Next] [New Search]