These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


143 related items for PubMed ID: 8913582

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Analytical description of the activation of multi-state receptors by continuous neurotransmitter signals at brain synapses.
    Uteshev VV, Pennefather PS.
    Biophys J; 1997 Mar; 72(3):1127-34. PubMed ID: 9138560
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Realistic modelling of receptor activation in hippocampal excitatory synapses: analysis of multivesicular release, release location, temperature and synaptic cross-talk.
    Boucher J, Kröger H, Sík A.
    Brain Struct Funct; 2010 Jul; 215(1):49-65. PubMed ID: 20526850
    [Abstract] [Full Text] [Related]

  • 6. Stochastic model of central synapses: slow diffusion of transmitter interacting with spatially distributed receptors and transporters.
    Trommershäuser J, Marienhagen J, Zippelius A.
    J Theor Biol; 1999 May 07; 198(1):101-20. PubMed ID: 10329118
    [Abstract] [Full Text] [Related]

  • 7. Monte Carlo simulation of release of vesicular content in neuroendocrine cells.
    Rabie HR, Rong J, Glavinović MI.
    Biol Cybern; 2006 Jun 07; 94(6):483-99. PubMed ID: 16550439
    [Abstract] [Full Text] [Related]

  • 8. Glutamate transporter EAAT4 in Purkinje cells controls intersynaptic diffusion of climbing fiber transmitter mediating inhibition of GABA release from interneurons.
    Satake S, Song SY, Konishi S, Imoto K.
    Eur J Neurosci; 2010 Dec 07; 32(11):1843-53. PubMed ID: 21070388
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Transmitter metabolism as a mechanism of synaptic plasticity: a modeling study.
    Axmacher N, Stemmler M, Engel D, Draguhn A, Ritz R.
    J Neurophysiol; 2004 Jan 07; 91(1):25-39. PubMed ID: 13679396
    [Abstract] [Full Text] [Related]

  • 11. A mathematical description of miniature postsynaptic current generation at central nervous system synapses.
    Uteshev VV, Pennefather PS.
    Biophys J; 1996 Sep 07; 71(3):1256-66. PubMed ID: 8874000
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Diffusion cannot govern the discharge of neurotransmitter in fast synapses.
    Khanin R, Parnas H, Segel L.
    Biophys J; 1994 Sep 07; 67(3):966-72. PubMed ID: 7811953
    [Abstract] [Full Text] [Related]

  • 16. Transmitter localization and vesicle turnover at a serotoninergic synapse between identified leech neurons in culture.
    Kuffler DP, Nicholls J, Drapeau P.
    J Comp Neurol; 1987 Feb 22; 256(4):516-26. PubMed ID: 2435767
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Postsynaptic activation at the squid giant synapse by photolytic release of L-glutamate from a 'caged' L-glutamate.
    Corrie JE, DeSantis A, Katayama Y, Khodakhah K, Messenger JB, Ogden DC, Trentham DR.
    J Physiol; 1993 Jun 22; 465():1-8. PubMed ID: 7901400
    [Abstract] [Full Text] [Related]

  • 19. Intrinsic quantal variability due to stochastic properties of receptor-transmitter interactions.
    Faber DS, Young WS, Legendre P, Korn H.
    Science; 1992 Nov 27; 258(5087):1494-8. PubMed ID: 1279813
    [Abstract] [Full Text] [Related]

  • 20. Saturation of postsynaptic receptors at central synapses?
    Frerking M, Wilson M.
    Curr Opin Neurobiol; 1996 Jun 27; 6(3):395-403. PubMed ID: 8794082
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.