These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


125 related items for PubMed ID: 8917508

  • 1. A curved RNA helix incorporating an internal loop with G.A and A.A non-Watson-Crick base pairing.
    Baeyens KJ, De Bondt HL, Pardi A, Holbrook SR.
    Proc Natl Acad Sci U S A; 1996 Nov 12; 93(23):12851-5. PubMed ID: 8917508
    [Abstract] [Full Text] [Related]

  • 2. Structure of an RNA internal loop consisting of tandem C-A+ base pairs.
    Jang SB, Hung LW, Chi YI, Holbrook EL, Carter RJ, Holbrook SR.
    Biochemistry; 1998 Aug 25; 37(34):11726-31. PubMed ID: 9718295
    [Abstract] [Full Text] [Related]

  • 3. Structure of an RNA double helix including uracil-uracil base pairs in an internal loop.
    Baeyens KJ, De Bondt HL, Holbrook SR.
    Nat Struct Biol; 1995 Jan 25; 2(1):56-62. PubMed ID: 7719854
    [Abstract] [Full Text] [Related]

  • 4. The crystal structure of an RNA oligomer incorporating tandem adenosine-inosine mismatches.
    Carter RJ, Baeyens KJ, SantaLucia J, Turner DH, Holbrook SR.
    Nucleic Acids Res; 1997 Oct 15; 25(20):4117-22. PubMed ID: 9321667
    [Abstract] [Full Text] [Related]

  • 5. The detailed structure of tandem G.A mismatched base-pair motifs in RNA duplexes is context dependent.
    Heus HA, Wijmenga SS, Hoppe H, Hilbers CW.
    J Mol Biol; 1997 Aug 08; 271(1):147-58. PubMed ID: 9300061
    [Abstract] [Full Text] [Related]

  • 6. Formation of sheared G:A base pairs in an RNA duplex modelled after ribozymes, as revealed by NMR.
    Katahira M, Kanagawa M, Sato H, Uesugi S, Fujii S, Kohno T, Maeda T.
    Nucleic Acids Res; 1994 Jul 25; 22(14):2752-9. PubMed ID: 7519767
    [Abstract] [Full Text] [Related]

  • 7. Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs.
    Holbrook SR, Cheong C, Tinoco I, Kim SH.
    Nature; 1991 Oct 10; 353(6344):579-81. PubMed ID: 1922368
    [Abstract] [Full Text] [Related]

  • 8. Solution structure of an RNA internal loop with three consecutive sheared GA pairs.
    Chen G, Znosko BM, Kennedy SD, Krugh TR, Turner DH.
    Biochemistry; 2005 Mar 01; 44(8):2845-56. PubMed ID: 15723528
    [Abstract] [Full Text] [Related]

  • 9. The crystal structure of an alternating RNA heptamer r(GUAUACA) forming a six base-paired duplex with 3'-end adenine overhangs.
    Shi K, Pan B, Sundaralingam M.
    Nucleic Acids Res; 2003 Mar 01; 31(5):1392-7. PubMed ID: 12595546
    [Abstract] [Full Text] [Related]

  • 10. The stability and structure of tandem GA mismatches in RNA depend on closing base pairs.
    Walter AE, Wu M, Turner DH.
    Biochemistry; 1994 Sep 20; 33(37):11349-54. PubMed ID: 7537087
    [Abstract] [Full Text] [Related]

  • 11. Comparative CD and thermodynamic studies between sheared A:G and Watson-Crick A:U(T) base pairs in RNA and DNA.
    Katahira M, Saeki J, Kanagawa M, Nagaoka M, Uesugi S.
    Nucleic Acids Symp Ser; 1995 Sep 20; (34):59-60. PubMed ID: 8841551
    [Abstract] [Full Text] [Related]

  • 12. Structure of the dodecamer r(GAUCACUUCGGU) with four 5'-overhang nucleotides.
    Eswaramoorthy S, Rao ST, Pan B, Sundaralingam M.
    Acta Crystallogr D Biol Crystallogr; 2004 Jan 20; 60(Pt 1):8-12. PubMed ID: 14684886
    [Abstract] [Full Text] [Related]

  • 13. Crystal structure of an alternating octamer r(GUAUGUA)dC with adjacent G x U wobble pairs.
    Biswas R, Wahl MC, Ban C, Sundaralingam M.
    J Mol Biol; 1997 Apr 18; 267(5):1149-56. PubMed ID: 9150403
    [Abstract] [Full Text] [Related]

  • 14. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure.
    Leontis NB, Westhof E.
    RNA; 1998 Sep 18; 4(9):1134-53. PubMed ID: 9740131
    [Abstract] [Full Text] [Related]

  • 15. Solution structure of a DNA double helix incorporating four consecutive non-Watson-Crick base-pairs.
    Chou SH, Chin KH.
    J Mol Biol; 2001 Sep 28; 312(4):769-81. PubMed ID: 11575931
    [Abstract] [Full Text] [Related]

  • 16. Solution structure of (rGCGGACGC)2 by two-dimensional NMR and the iterative relaxation matrix approach.
    Wu M, Turner DH.
    Biochemistry; 1996 Jul 30; 35(30):9677-89. PubMed ID: 8703939
    [Abstract] [Full Text] [Related]

  • 17. Guanine-1,N6-ethenoadenine base pairs in the crystal structure of d(CGCGAATT(epsilon dA)GCG).
    Leonard GA, McAuley-Hecht KE, Gibson NJ, Brown T, Watson WP, Hunter WN.
    Biochemistry; 1994 Apr 26; 33(16):4755-61. PubMed ID: 8161534
    [Abstract] [Full Text] [Related]

  • 18. RNA tertiary structure of the HIV RRE domain II containing non-Watson-Crick base pairs GG and GA: molecular modeling studies.
    Le SY, Pattabiraman N, Maizel JV.
    Nucleic Acids Res; 1994 Sep 25; 22(19):3966-76. PubMed ID: 7937119
    [Abstract] [Full Text] [Related]

  • 19. Structures of two RNA octamers containing tandem G.A base pairs.
    Jang SB, Baeyens K, Jeong MS, SantaLucia J, Turner D, Holbrook SR.
    Acta Crystallogr D Biol Crystallogr; 2004 May 25; 60(Pt 5):829-35. PubMed ID: 15103128
    [Abstract] [Full Text] [Related]

  • 20. Conformational features of the four successive non-Watson-Crick base pairs in RNA duplex.
    Fujii S, Tanaka Y, Uesugi S, Tanaka T, Sakata T, Hiroaki H.
    Nucleic Acids Symp Ser; 1992 May 25; (27):63-4. PubMed ID: 1283916
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.