These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
308 related items for PubMed ID: 8917532
1. Regulation of transforming growth factor beta- and activin-induced transcription by mammalian Mad proteins. Chen Y, Lebrun JJ, Vale W. Proc Natl Acad Sci U S A; 1996 Nov 12; 93(23):12992-7. PubMed ID: 8917532 [Abstract] [Full Text] [Related]
2. Characterization of a bone morphogenetic protein-responsive Smad-binding element. Kusanagi K, Inoue H, Ishidou Y, Mishima HK, Kawabata M, Miyazono K. Mol Biol Cell; 2000 Feb 12; 11(2):555-65. PubMed ID: 10679014 [Abstract] [Full Text] [Related]
3. DPC4 (SMAD4) mediates transforming growth factor-beta1 (TGF-beta1) induced growth inhibition and transcriptional response in breast tumour cells. de Winter JP, Roelen BA, ten Dijke P, van der Burg B, van den Eijnden-van Raaij AJ. Oncogene; 1997 Apr 24; 14(16):1891-9. PubMed ID: 9150356 [Abstract] [Full Text] [Related]
4. Cloning and expression of a rat Smad1: regulation by TGFbeta and modulation by the Ras/MEK pathway. Yue J, Hartsough MT, Frey RS, Frielle T, Mulder KM. J Cell Physiol; 1999 Mar 24; 178(3):387-96. PubMed ID: 9989785 [Abstract] [Full Text] [Related]
5. Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activin. Cárcamo J, Weis FM, Ventura F, Wieser R, Wrana JL, Attisano L, Massagué J. Mol Cell Biol; 1994 Jun 24; 14(6):3810-21. PubMed ID: 8196624 [Abstract] [Full Text] [Related]
6. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Hoodless PA, Haerry T, Abdollah S, Stapleton M, O'Connor MB, Attisano L, Wrana JL. Cell; 1996 May 17; 85(4):489-500. PubMed ID: 8653785 [Abstract] [Full Text] [Related]
7. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Lagna G, Hata A, Hemmati-Brivanlou A, Massagué J. Nature; 1996 Oct 31; 383(6603):832-6. PubMed ID: 8893010 [Abstract] [Full Text] [Related]
8. Repression of Smad-dependent transforming growth factor-beta signaling by Epstein-Barr virus latent membrane protein 1 through nuclear factor-kappaB. Mori N, Morishita M, Tsukazaki T, Yamamoto N. Int J Cancer; 2003 Jul 10; 105(5):661-8. PubMed ID: 12740915 [Abstract] [Full Text] [Related]
9. The Mad1 transcription factor is a novel target of activin and TGF-beta action in keratinocytes: possible role of Mad1 in wound repair and psoriasis. Werner S, Beer HD, Mauch C, Lüscher B, Werner S. Oncogene; 2001 Nov 08; 20(51):7494-504. PubMed ID: 11709721 [Abstract] [Full Text] [Related]
10. A human Mad protein acting as a BMP-regulated transcriptional activator. Liu F, Hata A, Baker JC, Doody J, Cárcamo J, Harland RM, Massagué J. Nature; 1996 Jun 13; 381(6583):620-3. PubMed ID: 8637600 [Abstract] [Full Text] [Related]
11. Engagement of activin and bone morphogenetic protein signaling pathway Smad proteins in the induction of inhibin B production in ovarian granulosa cells. Bondestam J, Kaivo-oja N, Kallio J, Groome N, Hydén-Granskog C, Fujii M, Moustakas A, Jalanko A, ten Dijke P, Ritvos O. Mol Cell Endocrinol; 2002 Sep 30; 195(1-2):79-88. PubMed ID: 12354674 [Abstract] [Full Text] [Related]
12. Bone morphogenetic proteins. Chen D, Zhao M, Mundy GR. Growth Factors; 2004 Dec 30; 22(4):233-41. PubMed ID: 15621726 [Abstract] [Full Text] [Related]
13. Adenoviral gene transfer allows Smad-responsive gene promoter analyses and delineation of type I receptor usage of transforming growth factor-beta family ligands in cultured human granulosa luteal cells. Kaivo-Oja N, Mottershead DG, Mazerbourg S, Myllymaa S, Duprat S, Gilchrist RB, Groome NP, Hsueh AJ, Ritvos O. J Clin Endocrinol Metab; 2005 Jan 30; 90(1):271-8. PubMed ID: 15483083 [Abstract] [Full Text] [Related]
14. A transcriptional partner for MAD proteins in TGF-beta signalling. Chen X, Rubock MJ, Whitman M. Nature; 1996 Oct 24; 383(6602):691-6. PubMed ID: 8878477 [Abstract] [Full Text] [Related]
15. Characterization of the MADH2/Smad2 gene, a human Mad homolog responsible for the transforming growth factor-beta and activin signal transduction pathway. Takenoshita S, Mogi A, Nagashima M, Yang K, Yagi K, Hanyu A, Nagamachi Y, Miyazono K, Hagiwara K. Genomics; 1998 Feb 15; 48(1):1-11. PubMed ID: 9503010 [Abstract] [Full Text] [Related]
16. Repression of transforming-growth-factor-beta-mediated transcription by nuclear factor kappaB. Nagarajan RP, Chen F, Li W, Vig E, Harrington MA, Nakshatri H, Chen Y. Biochem J; 2000 Jun 15; 348 Pt 3(Pt 3):591-6. PubMed ID: 10839991 [Abstract] [Full Text] [Related]
17. A widely expressed transmembrane serine/threonine kinase that does not bind activin, inhibin, transforming growth factor beta, or bone morphogenic factor. Matsuzaki K, Xu J, Wang F, McKeehan WL, Krummen L, Kan M. J Biol Chem; 1993 Jun 15; 268(17):12719-23. PubMed ID: 8389764 [Abstract] [Full Text] [Related]
18. Identification of Smad2, a human Mad-related protein in the transforming growth factor beta signaling pathway. Nakao A, Röijer E, Imamura T, Souchelnytskyi S, Stenman G, Heldin CH, ten Dijke P. J Biol Chem; 1997 Jan 31; 272(5):2896-900. PubMed ID: 9006934 [Abstract] [Full Text] [Related]
19. Activin A-induced HepG2 liver cell apoptosis: involvement of activin receptors and smad proteins. Chen W, Woodruff TK, Mayo KE. Endocrinology; 2000 Mar 31; 141(3):1263-72. PubMed ID: 10698204 [Abstract] [Full Text] [Related]
20. Smad6 functions as an intracellular antagonist of some TGF-beta family members during Xenopus embryogenesis. Nakayama T, Gardner H, Berg LK, Christian JL. Genes Cells; 1998 Jun 31; 3(6):387-94. PubMed ID: 9734784 [Abstract] [Full Text] [Related] Page: [Next] [New Search]