These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
112 related items for PubMed ID: 8922678
1. Postnatal development and the differential expression of presynaptic terminal-associated proteins in the developing retina of the Brazilian opossum, Monodelphis domestica. Greenlee MH, Swanson JJ, Simon JJ, Elmquist JK, Jacobson CD, Sakaguchi DS. Brain Res Dev Brain Res; 1996 Oct 23; 96(1-2):159-72. PubMed ID: 8922678 [Abstract] [Full Text] [Related]
2. Transient, high levels of SNAP-25 expression in cholinergic amacrine cells during postnatal development of the mammalian retina. West Greenlee MH, Finley SK, Wilson MC, Jacobson CD, Sakaguchi DS. J Comp Neurol; 1998 May 11; 394(3):374-85. PubMed ID: 9579400 [Abstract] [Full Text] [Related]
3. Cell birth and death in the developing retina of the Brazilian opossum, Monodelphis domestica. Sakaguchi DS, Hoffelen SV, Greenlee MH, Harper MM, Au DT. Brain Res; 2008 Feb 21; 1195():28-42. PubMed ID: 18191114 [Abstract] [Full Text] [Related]
4. The expression of GAP-43 and synaptophysin in the developing rat retina. Kapfhammer JP, Christ F, Schwab ME. Brain Res Dev Brain Res; 1994 Jul 15; 80(1-2):251-60. PubMed ID: 7955350 [Abstract] [Full Text] [Related]
5. Differential localization of SNARE complex proteins SNAP-25, syntaxin, and VAMP during development of the mammalian retina. Greenlee MH, Roosevelt CB, Sakaguchi DS. J Comp Neurol; 2001 Feb 12; 430(3):306-20. PubMed ID: 11169469 [Abstract] [Full Text] [Related]
6. Characterization and ontogeny of synapse-associated proteins in the developing facial and hypoglossal motor nuclei of the Brazilian opossum. Swanson JJ, Kuehl-Kovarik MC, Wilson MC, Elmquist JK, Jacobson CD. J Comp Neurol; 1996 Apr 29; 368(2):270-84. PubMed ID: 8725306 [Abstract] [Full Text] [Related]
7. Synaptogenesis in the brachial and lumbosacral enlargements of the spinal cord in the postnatal opossum, Monodelphis domestica. Gingras J, Cabana T. J Comp Neurol; 1999 Nov 29; 414(4):551-60. PubMed ID: 10531545 [Abstract] [Full Text] [Related]
8. Differential expression of the presynaptic protein SNAP-25 in mammalian retina. Catsicas S, Catsicas M, Keyser KT, Karten HJ, Wilson MC, Milner RJ. J Neurosci Res; 1992 Sep 29; 33(1):1-9. PubMed ID: 1453474 [Abstract] [Full Text] [Related]
9. Cellular and developmental distribution of human homologues of the Drosophilia rdgB protein in the rat retina. Tian D, Lev S. Invest Ophthalmol Vis Sci; 2002 Jun 29; 43(6):1946-53. PubMed ID: 12037004 [Abstract] [Full Text] [Related]
10. Ontogeny of arginine vasopressin-like immunoreactivity in the Brazilian opossum brain. Iqbal J, Jacobson CD. Brain Res Dev Brain Res; 1995 Oct 27; 89(1):11-32. PubMed ID: 8575082 [Abstract] [Full Text] [Related]
11. Differential expression of syntaxin-1 and synaptophysin in the developing and adult human retina. Nag TC, Wadhwa S. J Biosci; 2001 Jun 27; 26(2):179-91. PubMed ID: 11426054 [Abstract] [Full Text] [Related]
12. Formation of synaptic specializations in the inner plexiform layer of the developing chick retina. Hering H, Kröger S. J Comp Neurol; 1996 Nov 18; 375(3):393-405. PubMed ID: 8915838 [Abstract] [Full Text] [Related]
13. Differential distribution and developmental expression of synaptic vesicle protein 2 isoforms in the mouse retina. Wang MM, Janz R, Belizaire R, Frishman LJ, Sherry DM. J Comp Neurol; 2003 May 19; 460(1):106-22. PubMed ID: 12687700 [Abstract] [Full Text] [Related]
14. Rab3 proteins and SNAP-25, essential components of the exocytosis machinery in conventional synapses, are absent from ribbon synapses of the mouse retina. Grabs D, Bergmann M, Urban M, Post A, Gratzl M. Eur J Neurosci; 1996 Jan 19; 8(1):162-8. PubMed ID: 8713460 [Abstract] [Full Text] [Related]
15. Horizontal cell differentiation in the retina of the Brazilian opossum, Monodelphis domestica. Lyser KM, Chernomorsky R, Michalopoulos C, Twersky LH. Int J Dev Neurosci; 1999 Jun 19; 17(3):225-37. PubMed ID: 10452366 [Abstract] [Full Text] [Related]
16. Synaptic vesicle and synaptic membrane glycoproteins during pre- and postnatal development of mouse cerebral cortex, cerebellum and spinal cord. Mayanil CS, Knepper PA. Dev Neurosci; 1993 Jun 19; 15(2):133-45. PubMed ID: 8168438 [Abstract] [Full Text] [Related]
17. Neuroglycan C, a neural tissue-specific transmembrane chondroitin sulfate proteoglycan, in retinal neural network formation. Inatani M, Tanihara H, Oohira A, Otori Y, Nishida A, Honjo M, Kido N, Honda Y. Invest Ophthalmol Vis Sci; 2000 Dec 19; 41(13):4338-46. PubMed ID: 11095636 [Abstract] [Full Text] [Related]
18. Ontogeny of cholecystokinin-like immunoreactivity in the Brazilian opossum brain. Fox CA, Jeyapalan M, Ross LR, Jacobson CD. Brain Res Dev Brain Res; 1991 Dec 17; 64(1-2):1-18. PubMed ID: 1786635 [Abstract] [Full Text] [Related]
19. Development of the outer retina in the mouse. Sharma RK, O'Leary TE, Fields CM, Johnson DA. Brain Res Dev Brain Res; 2003 Oct 10; 145(1):93-105. PubMed ID: 14519497 [Abstract] [Full Text] [Related]
20. Incorporation of murine brain progenitor cells into the developing mammalian retina. Van Hoffelen SJ, Young MJ, Shatos MA, Sakaguchi DS. Invest Ophthalmol Vis Sci; 2003 Jan 10; 44(1):426-34. PubMed ID: 12506105 [Abstract] [Full Text] [Related] Page: [Next] [New Search]