These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
185 related items for PubMed ID: 8923526
1. Accumulation and extrusion of permeant Ca2+ chelators in attenuation of synaptic transmission at hippocampal CA1 neurons. Ouanounou A, Zhang L, Tymianski M, Charlton MP, Wallace MC, Carlen PL. Neuroscience; 1996 Nov; 75(1):99-109. PubMed ID: 8923526 [Abstract] [Full Text] [Related]
2. Modulation of hippocampal synaptic transmission by low concentrations of cell-permeant Ca2+ chelators: effects of Ca2+ affinity, chelator structure and binding kinetics. Spigelman I, Tymianski M, Wallace CM, Carlen PL, Velumian AA. Neuroscience; 1996 Nov; 75(2):559-72. PubMed ID: 8931019 [Abstract] [Full Text] [Related]
3. Potentiation of a slow Ca(2+)-dependent K+ current by intracellular Ca2+ chelators in hippocampal CA1 neurons of rat brain slices. Zhang L, Pennefather P, Velumian A, Tymianski M, Charlton M, Carlen PL. J Neurophysiol; 1995 Dec; 74(6):2225-41. PubMed ID: 8747186 [Abstract] [Full Text] [Related]
4. Mechanism of action and persistence of neuroprotection by cell-permeant Ca2+ chelators. Tymianski M, Spigelman I, Zhang L, Carlen PL, Tator CH, Charlton MP, Wallace MC. J Cereb Blood Flow Metab; 1994 Nov; 14(6):911-23. PubMed ID: 7929656 [Abstract] [Full Text] [Related]
5. Differential modulation of synaptic transmission by calcium chelators in young and aged hippocampal CA1 neurons: evidence for altered calcium homeostasis in aging. Ouanounou A, Zhang L, Charlton MP, Carlen PL. J Neurosci; 1999 Feb 01; 19(3):906-15. PubMed ID: 9920654 [Abstract] [Full Text] [Related]
6. Properties of neuroprotective cell-permeant Ca2+ chelators: effects on [Ca2+]i and glutamate neurotoxicity in vitro. Tymianski M, Charlton MP, Carlen PL, Tator CH. J Neurophysiol; 1994 Oct 01; 72(4):1973-92. PubMed ID: 7823112 [Abstract] [Full Text] [Related]
7. Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins. Abdel-Hamid KM, Tymianski M. J Neurosci; 1997 May 15; 17(10):3538-53. PubMed ID: 9133378 [Abstract] [Full Text] [Related]
8. Changes in the calcium dependence of glutamate transmission in the hippocampal CA1 region after brief hypoxia-hypoglycemia. Ouanonou A, Zhang Y, Zhang L. J Neurophysiol; 1999 Sep 15; 82(3):1147-55. PubMed ID: 10482734 [Abstract] [Full Text] [Related]
9. Effect of an intracellular calcium chelator on the regulation of electrically evoked [3H]-noradrenaline release from rat hippocampal slices. Fredholm BB, Hu PS. Br J Pharmacol; 1993 Jan 15; 108(1):126-31. PubMed ID: 8094021 [Abstract] [Full Text] [Related]
10. Calcium-calmodulin signalling pathway up-regulates glutamatergic synaptic function in non-pyramidal, fast spiking rat hippocampal CA1 neurons. Wang JH, Kelly P. J Physiol; 2001 Jun 01; 533(Pt 2):407-22. PubMed ID: 11389201 [Abstract] [Full Text] [Related]
11. Impaired presynaptic cytosolic and mitochondrial calcium dynamics in aged compared to young adult hippocampal CA1 synapses ameliorated by calcium chelation. Tonkikh AA, Carlen PL. Neuroscience; 2009 Apr 10; 159(4):1300-8. PubMed ID: 19215725 [Abstract] [Full Text] [Related]
12. Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals. Urbano FJ, Depetris RS, Uchitel OD. Pflugers Arch; 2001 Mar 10; 441(6):824-31. PubMed ID: 11316267 [Abstract] [Full Text] [Related]
13. Novel action of BAPTA series chelators on intrinsic K+ currents in rat hippocampal neurones. Lancaster B, Batchelor AM. J Physiol; 2000 Jan 15; 522 Pt 2(Pt 2):231-46. PubMed ID: 10639100 [Abstract] [Full Text] [Related]
14. Effects on K+ currents in rat cerebellar granule neurones of a membrane-permeable analogue of the calcium chelator BAPTA. Watkins CS, Mathie A. Br J Pharmacol; 1996 Aug 15; 118(7):1772-8. PubMed ID: 8842443 [Abstract] [Full Text] [Related]
16. Calcium dependence of depolarization-induced suppression of inhibition in rat hippocampal CA1 pyramidal neurons. Lenz RA, Alger BE. J Physiol; 1999 Nov 15; 521 Pt 1(Pt 1):147-57. PubMed ID: 10562341 [Abstract] [Full Text] [Related]
17. Intracellular injection of a Ca2+ chelator prevents generation of anoxic LTP. Crépel V, Ben-Ari Y. J Neurophysiol; 1996 Feb 15; 75(2):770-9. PubMed ID: 8714651 [Abstract] [Full Text] [Related]
18. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. Rozov A, Burnashev N, Sakmann B, Neher E. J Physiol; 2001 Mar 15; 531(Pt 3):807-26. PubMed ID: 11251060 [Abstract] [Full Text] [Related]
19. Raised Intracellular Calcium Contributes to Ischemia-Induced Depression of Evoked Synaptic Transmission. Jalini S, Ye H, Tonkikh AA, Charlton MP, Carlen PL. PLoS One; 2016 Mar 15; 11(3):e0148110. PubMed ID: 26934214 [Abstract] [Full Text] [Related]
20. Ca(2+)-dependent plasticity of miniature inhibitory postsynaptic currents after amputation of dendrites in central neurons. Soltesz I, Mody I. J Neurophysiol; 1995 May 15; 73(5):1763-73. PubMed ID: 7623078 [Abstract] [Full Text] [Related] Page: [Next] [New Search]