These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 8924599
1. Structural origins of bulky oxidative DNA adducts (type II I-compounds) as deduced by oxidation of oligonucleotides of known sequence. Randerath K, Randerath E, Smith CV, Chang J. Chem Res Toxicol; 1996; 9(1):247-54. PubMed ID: 8924599 [Abstract] [Full Text] [Related]
2. Base selectivity and effects of sequence and DNA secondary structure on the formation of covalent adducts derived from the equine estrogen metabolite 4-hydroxyequilenin. Kolbanovskiy A, Kuzmin V, Shastry A, Kolbanovskaya M, Chen D, Chang M, Bolton JL, Geacintov NE. Chem Res Toxicol; 2005 Nov; 18(11):1737-47. PubMed ID: 16300383 [Abstract] [Full Text] [Related]
3. Benzo[a]pyrene-7,8-quinone-3'-mononucleotide adduct standards for 32P postlabeling analyses: detection of benzo[a]pyrene-7,8-quinone-calf thymus DNA adducts. Balu N, Padgett WT, Nelson GB, Lambert GR, Ross JA, Nesnow S. Anal Biochem; 2006 Aug 15; 355(2):213-23. PubMed ID: 16797471 [Abstract] [Full Text] [Related]
4. Ochratoxin a causes DNA damage and cytogenetic effects but no DNA adducts in rats. Mally A, Pepe G, Ravoori S, Fiore M, Gupta RC, Dekant W, Mosesso P. Chem Res Toxicol; 2005 Aug 15; 18(8):1253-61. PubMed ID: 16097798 [Abstract] [Full Text] [Related]
5. Generation of putative intrastrand cross-links and strand breaks in DNA by transition metal ion-mediated oxygen radical attack. Lloyd DR, Phillips DH, Carmichael PL. Chem Res Toxicol; 1997 Apr 15; 10(4):393-400. PubMed ID: 9114975 [Abstract] [Full Text] [Related]
7. Implications of cytosine methylation on (+)-anti-Benzo[a]pyrene 7, 8-dihydrodiol 9,10-epoxide N(2)-dG adduct formation in 5'-d(CGT), 5'-d(CGA), and 5'-d(CGC) sequence contexts of single- and double-stranded oligonucleotides. Pradhan P, Gräslund A, Seidel A, Jernström B. Chem Res Toxicol; 1999 Sep 19; 12(9):816-21. PubMed ID: 10490503 [Abstract] [Full Text] [Related]
8. DNA-protein cross-links between guanine and lysine depend on the mechanism of oxidation for formation of C5 vs C8 guanosine adducts. Xu X, Muller JG, Ye Y, Burrows CJ. J Am Chem Soc; 2008 Jan 16; 130(2):703-9. PubMed ID: 18081286 [Abstract] [Full Text] [Related]
9. Detection of PCB adducts by the 32P-postlabeling technique. McLean MR, Robertson LW, Gupta RC. Chem Res Toxicol; 1996 Jan 16; 9(1):165-71. PubMed ID: 8924587 [Abstract] [Full Text] [Related]
10. Intensification and depletion of specific bulky renal DNA adducts (I-compounds) following exposure of male F344 rats to the renal carcinogen ferric nitrilotriacetate (Fe-NTA). Randerath E, Watson WP, Zhou GD, Chang J, Randerath K. Mutat Res; 1995 Feb 16; 341(4):265-79. PubMed ID: 7531286 [Abstract] [Full Text] [Related]
11. Covalent DNA adducts formed by benzo[c]chrysene in mouse epidermis and by benzo[c]chrysene fjord-region diol epoxides reacted with DNA and polynucleotides. Giles AS, Seidel A, Phillips DH. Chem Res Toxicol; 1997 Nov 16; 10(11):1275-84. PubMed ID: 9403182 [Abstract] [Full Text] [Related]
12. Sequence context effects on mutational properties of cis-opened benzo[c]phenanthrene diol epoxide-deoxyadenosine adducts in site-specific mutation studies. Pontén I, Sayer JM, Pilcher AS, Yagi H, Kumar S, Jerina DM, Dipple A. Biochemistry; 1999 Jan 19; 38(3):1144-52. PubMed ID: 9894012 [Abstract] [Full Text] [Related]
13. Reactions of formaldehyde plus acetaldehyde with deoxyguanosine and DNA: formation of cyclic deoxyguanosine adducts and formaldehyde cross-links. Cheng G, Shi Y, Sturla SJ, Jalas JR, McIntee EJ, Villalta PW, Wang M, Hecht SS. Chem Res Toxicol; 2003 Feb 19; 16(2):145-52. PubMed ID: 12588185 [Abstract] [Full Text] [Related]
14. Mutation spectra induced by alpha-acetoxytamoxifen-DNA adducts in human DNA repair proficient and deficient (xeroderma pigmentosum complementation group A) cells. McLuckie KI, Crookston RJ, Gaskell M, Farmer PB, Routledge MN, Martin EA, Brown K. Biochemistry; 2005 Jun 07; 44(22):8198-205. PubMed ID: 15924439 [Abstract] [Full Text] [Related]
15. Nickel(II)- and cobalt(II)-dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin. Nackerdien Z, Kasprzak KS, Rao G, Halliwell B, Dizdaroglu M. Cancer Res; 1991 Nov 01; 51(21):5837-42. PubMed ID: 1933852 [Abstract] [Full Text] [Related]
16. Identification of N-(deoxyguanosin-8-yl)-4-azobiphenyl by (32)P-postlabeling analyses of DNA in human uroepithelial cells exposed to proximate metabolites of the environmental carcinogen 4-aminobiphenyl. Hatcher JF, Swaminathan S. Environ Mol Mutagen; 2002 Nov 01; 39(4):314-22. PubMed ID: 12112383 [Abstract] [Full Text] [Related]
17. Methods for testing compounds for DNA adduct formation. Reddy MV. Regul Toxicol Pharmacol; 2000 Dec 01; 32(3):256-63. PubMed ID: 11162719 [Abstract] [Full Text] [Related]
18. Preferential carcinogen-DNA adduct formation at codons 12 and 14 in the human K-ras gene and their possible mechanisms. Hu W, Feng Z, Tang MS. Biochemistry; 2003 Aug 26; 42(33):10012-23. PubMed ID: 12924950 [Abstract] [Full Text] [Related]
19. Lipid peroxidation-derived etheno-DNA adducts in human atherosclerotic lesions. Nair J, De Flora S, Izzotti A, Bartsch H. Mutat Res; 2007 Aug 01; 621(1-2):95-105. PubMed ID: 17412369 [Abstract] [Full Text] [Related]
20. Characterization of a covalent monoadduct of neocarzinostatin chromophore at a DNA bulge. Kappen LS, Goldberg IH. Biochemistry; 1997 Dec 02; 36(48):14861-7. PubMed ID: 9398208 [Abstract] [Full Text] [Related] Page: [Next] [New Search]