These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


222 related items for PubMed ID: 8928887

  • 1. Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in the dog. III. Role of cardiac afferents.
    Katchanov G, Xu J, Hurt CM, Pelleg A.
    Am J Physiol; 1996 May; 270(5 Pt 2):H1785-90. PubMed ID: 8928887
    [Abstract] [Full Text] [Related]

  • 2. Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in the dog. IV. Role of LV vagal afferents.
    Katchanov G, Xu J, Clay A, Pelleg A.
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1898-903. PubMed ID: 9139977
    [Abstract] [Full Text] [Related]

  • 3. Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in dogs.
    Pelleg A, Hurt CM, Soler-Baillo JM, Polansky M.
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H681-90. PubMed ID: 8368370
    [Abstract] [Full Text] [Related]

  • 4. Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in dogs. II. Vagal afferent traffic.
    Hurt CM, Wang L, Xu J, Sterious W, Pelleg A.
    Am J Physiol; 1994 Sep; 267(3 Pt 2):H1093-7. PubMed ID: 8092273
    [Abstract] [Full Text] [Related]

  • 5. ATP shortens atrial action potential duration in the dog: role of adenosine, the vagus nerve, and G protein.
    Pelleg A, Hurt CM, Hewlett EL.
    Can J Physiol Pharmacol; 1996 Jan; 74(1):15-22. PubMed ID: 8963948
    [Abstract] [Full Text] [Related]

  • 6. Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in the dog. V. Role of purinergic receptors.
    Xu J, Kussmaul W, Kurnik PB, Al-Ahdav M, Pelleg A.
    Am J Physiol Regul Integr Comp Physiol; 2005 Mar; 288(3):R651-5. PubMed ID: 15539614
    [Abstract] [Full Text] [Related]

  • 7. Mechanism of action of ATP on canine pulmonary vagal C fibre nerve terminals.
    Pelleg A, Hurt CM.
    J Physiol; 1996 Jan 01; 490 ( Pt 1)(Pt 1):265-75. PubMed ID: 8745294
    [Abstract] [Full Text] [Related]

  • 8. Evidence for vagal involvement in the electrophysiologic actions of exogenous adenosine and adenosine triphosphate in the canine heart.
    Pelleg A, Mitamura H, Michelson EL.
    J Auton Pharmacol; 1985 Sep 01; 5(3):207-12. PubMed ID: 4055818
    [Abstract] [Full Text] [Related]

  • 9. Comparative electrophysiologic effects of adenosine triphosphate and adenosine in the canine heart: influence of atropine, propranolol, vagotomy, dipyridamole and aminophylline.
    Pelleg A, Belhassen B, Ilia R, Laniado S.
    Am J Cardiol; 1985 Feb 15; 55(5):571-6. PubMed ID: 3969901
    [Abstract] [Full Text] [Related]

  • 10. Reflex coronary vasodilation evoked by chemical stimulation of cardiac afferent vagal C fibres in dogs.
    Clozel JP, Pisarri TE, Coleridge HM, Coleridge JC.
    J Physiol; 1990 Sep 15; 428():215-32. PubMed ID: 2231410
    [Abstract] [Full Text] [Related]

  • 11. Role of vagal afferents in the reflex effects of capsaicin and lobeline in monkeys.
    Deep V, Singh M, Ravi K.
    Respir Physiol; 2001 Apr 15; 125(3):155-68. PubMed ID: 11282384
    [Abstract] [Full Text] [Related]

  • 12. Vagal modulation of intestinal afferent sensitivity to systemic LPS in the rat.
    Liu CY, Mueller MH, Grundy D, Kreis ME.
    Am J Physiol Gastrointest Liver Physiol; 2007 May 15; 292(5):G1213-20. PubMed ID: 17204546
    [Abstract] [Full Text] [Related]

  • 13. Vagal component in the chronotropic and dromotropic actions of adenosine and ATP.
    Pelleg A, Mitsuoka T, Mazgalev T, Michelson EL.
    Prog Clin Biol Res; 1987 May 15; 230():375-84. PubMed ID: 3588606
    [Abstract] [Full Text] [Related]

  • 14. Effects of vagal and carotid chemoreceptor afferents on the frequency and pattern of spontaneous augmented breaths in rabbits.
    Matsumoto S, Takeda M, Saiki C, Takahashi T, Ojima K.
    Lung; 1997 May 15; 175(3):175-86. PubMed ID: 9087945
    [Abstract] [Full Text] [Related]

  • 15. A functional study of uncrossed and crossed pulmonary afferent fibres in the cervical vagus nerves of the cat.
    Daly M de B, Cook MN, Sykes RM, Spyer KM.
    Auton Neurosci; 2001 Jun 20; 89(1-2):60-73. PubMed ID: 11474648
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Activations of TRPA1 and P2X receptors are important in ROS-mediated stimulation of capsaicin-sensitive lung vagal afferents by cigarette smoke in rats.
    Lin YS, Hsu CC, Bien MY, Hsu HC, Weng HT, Kou YR.
    J Appl Physiol (1985); 2010 May 20; 108(5):1293-303. PubMed ID: 20167675
    [Abstract] [Full Text] [Related]

  • 18. Vagal involvement in the action of exogenous adenosine triphosphate on reflex renal sympathetic nerve activity.
    Taneyama C, Goto H, Benson KT, Unruh GK, Arakawa K.
    Anesth Analg; 1991 Mar 20; 72(3):351-8. PubMed ID: 1994764
    [Abstract] [Full Text] [Related]

  • 19. Perivagal antagonist treatment in rats selectively blocks the reflex and afferent responses of vagal lung C fibers to intravenous agonists.
    Lin YJ, Lin YS, Lai CJ, Yuan ZF, Ruan T, Kou YR.
    J Appl Physiol (1985); 2013 Feb 20; 114(3):361-70. PubMed ID: 23221955
    [Abstract] [Full Text] [Related]

  • 20. Enhanced responsiveness of cardiac vagal chemosensitive endings to bradykinin in heart failure.
    Schultz HD, Wang W, Ustinova EE, Zucker IH.
    Am J Physiol; 1997 Aug 20; 273(2 Pt 2):R637-45. PubMed ID: 9277549
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.